AoPS Community

Paraguay Mathematical Olympiad 2007

www.artofproblemsolving.com/community/c4390
by Leicich

1 A list with 2007 positive integers is written on a board, such that the arithmetic mean of all the numbers is 12 . Then, seven consecutive numbers are erased from the board. The arithmetic mean of the remaining numbers is 11.915 .
The seven erased numbers have this property: the sixth number is half of the seventh, the fifth number is half of the sixth, and so on. Determine the 7 erased numbers.

2 Let $A B C D$ be a square, such that the length of its sides are integers. This square is divided in 89 smaller squares, 88 squares that have sides with length 1 , and 1 square that has sides with length n, where n is an integer larger than 1 . Find all possible lengths for the sides of $A B C D$.

3 Let $A B C D$ be a square, E and F midpoints of $A B$ and $A D$ respectively, and P the intersection of $C F$ and $D E$.
a) Show that $D E \perp C F$.
b) Determine the ratio $C F: P C: E P$

4 Each number from the set $\{1,2,3,4,5,6,7\}$ must be written in each circle of the diagram, so that the sum of any three aligned numbers is the same (e.g., $A+D+E=D+C+B$). What number cannot be placed on the circle E ?

5 Let A, B, C, be points in the plane, such that we can draw 3 equal circumferences in which the first one passes through A and B, the second one passes through B and C, the last one passes through C and A, and all 3 circumferences share a common point P.
Show that the radius of each of these circumferences is equal to the circumradius of triangle $A B C$, and that P is the orthocenter of triangle $A B C$.

