AoPS Community

Paraguay Mathematical Olympiad 2008

www.artofproblemsolving.com/community/c4391
by Leicich

1 How many positive integers $n<500$ exist such that its prime factors are exclusively $2,7,11$, or a combination of these?

2 Find for which values of n, an integer larger than 1 but smaller than 100 , the following expression has its minimum value:
$S=|n-1|+|n-2|+\ldots+|n-100|$
3 Let $A B C$ be a triangle, where $A B=A C$ and $B C=12$. Let D be the midpoint of $B C$. Let E be a point in $A C$ such that $D E \perp A C$. Let F be a point in $A B$ such that $E F \| B C$. If $E C=4$, determine the length of $E F$.
$4 \quad$ Let Γ be a circumference and A a point outside it. Let B and C be points in Γ such that $A B$ and $A C$ are tangent to Γ. Let P be a point in Γ. Let D, E and F be points in $B C, A C$ and $A B$ respectively, such that $P D \perp B C, P E \perp A C$, and $P F \perp A B$. Show that $P D^{2}=P E \cdot P F$

5 Let m, n, p be rational numbers such that $\sqrt{m}+\sqrt{n}+\sqrt{p}$ is a rational number. Prove that $\sqrt{m}, \sqrt{n}, \sqrt{p}$ are also rational numbers

