Art of Problem Solving

AoPS Community

2017 Spain Mathematical Olympiad

Spain Mathematical Olympiad 2017

www.artofproblemsolving.com/community/c439754
by whiwho

1 Find the amount of different values given by the following expression:
$\frac{n^{2}-2}{n^{2}-n+2}$
where $n \in\{1,2,3, . ., 100\}$
2 A midpoint plotter is an instrument which draws the exact mid point of two point previously drawn. Starting off two points 1 unit of distance apart and using only the midpoint plotter, you have to get two point which are strictly at a distance between $\frac{1}{2017}$ and $\frac{1}{2016}$ units, drawing the minimum amount of points. Which is the minimum number of times you will need to use the midpoint plotter and what strategy should you follow to achieve it?

3 Let p be an odd prime and $S_{q}=\frac{1}{2 * 3 * 4}+\frac{1}{5 * 6 * 7}+\ldots+\frac{1}{q(q+1)(q+2)}$, where $q=\frac{3 p-5}{2}$. We write $\frac{1}{2}-2 S_{q}$ in the form $\frac{m}{n}$, where m and n are integers. Prove that $m \equiv n(\bmod p)$

4
You are given a row made by 2018 squares, numbered consecutively from 0 to 2017. Initially, there is a coin in the square 0 . Two players A and B play alternatively, starting with A, on the following way: In his turn, each player can either make his coin advance 53 squares or make the coin go back 2 squares. On each move the coin can never go to a number less than 0 or greater than 2017. The player who puts the coin on the square 2017 wins. Who is the one with the wining strategy and how should he play to win?

5 Let a, b, c be positive real numbers so that $a+b+c=\frac{1}{\sqrt{3}}$. Find the maximum value of

$$
27 a b c+a \sqrt{a^{2}+2 b c}+b \sqrt{b^{2}+2 c a}+c \sqrt{c^{2}+2 a b}
$$

6 In the triangle $A B C$, the respective mid points of the sides $B C, A B$ and $A C$ are D, E and F. Let M be the point where the internal bisector of the angle $\angle A D B$ intersects the side $A B$, and N the point where the internal bisector of the angle $\angle A D C$ intersects the side $A C$. Also, let O be the intersection point of $A D$ and $M N, P$ the intersection point of $A B$ and $F O$, and R the intersection point of $A C$ and $E O$. Prove that $P R=A D$.

