USAMO 2017

www.artofproblemsolving.com/community/c439884
by CantonMathGuy, skipiano, jeff10, DrMath, v_Enhance, lucasxia01, jasonhu4, rrusczyk

Day 1 April 19th

1 Prove that there are infinitely many distinct pairs (a, b) of relatively prime integers $a>1$ and $b>1$ such that $a^{b}+b^{a}$ is divisible by $a+b$.

2 Let $m_{1}, m_{2}, \ldots, m_{n}$ be a collection of n positive integers, not necessarily distinct. For any sequence of integers $A=\left(a_{1}, \ldots, a_{n}\right)$ and any permutation $w=w_{1}, \ldots, w_{n}$ of m_{1}, \ldots, m_{n}, define an [i] A-inversion[/i] of w to be a pair of entries w_{i}, w_{j} with $i<j$ for which one of the following conditions holds:
$-a_{i} \geq w_{i}>w_{j}$
$-w_{j}>a_{i} \geq w_{i}$, or
$-w_{i}>w_{j}>a_{i}$.
Show that, for any two sequences of integers $A=\left(a_{1}, \ldots, a_{n}\right)$ and $B=\left(b_{1}, \ldots, b_{n}\right)$, and for any positive integer k, the number of permutations of m_{1}, \ldots, m_{n} having exactly $k A$-inversions is equal to the number of permutations of m_{1}, \ldots, m_{n} having exactly $k B$-inversions.
$3 \quad$ Let $A B C$ be a scalene triangle with circumcircle Ω and incenter I. Ray $A I$ meets $\overline{B C}$ at D and meets Ω again at M; the circle with diameter $\overline{D M}$ cuts Ω again at K. Lines $M K$ and $B C$ meet at S, and N is the midpoint of $\overline{I S}$. The circumcircles of $\triangle K I D$ and $\triangle M A N$ intersect at points L_{1} and L_{2}. Prove that Ω passes through the midpoint of either $\overline{I L_{1}}$ or $\overline{I L_{2}}$.

Proposed by Evan Chen

Day 2 April 20th

4 Let $P_{1}, P_{2}, \ldots, P_{2 n}$ be $2 n$ distinct points on the unit circle $x^{2}+y^{2}=1$, other than $(1,0)$. Each point is colored either red or blue, with exactly n red points and n blue points. Let $R_{1}, R_{2}, \ldots, R_{n}$ be any ordering of the red points. Let B_{1} be the nearest blue point to R_{1} traveling counterclockwise around the circle starting from R_{1}. Then let B_{2} be the nearest of the remaining blue points to R_{2} travelling counterclockwise around the circle from R_{2}, and so on, until we have labeled all of the blue points B_{1}, \ldots, B_{n}. Show that the number of counterclockwise arcs of the form $R_{i} \rightarrow B_{i}$ that contain the point (1,0) is independent of the way we chose the ordering R_{1}, \ldots, R_{n} of the red points.

5 Let \mathbf{Z} denote the set of all integers. Find all real numbers $c>0$ such that there exists a labeling of the lattice points $(x, y) \in \mathbf{Z}^{2}$ with positive integers for which:

- only finitely many distinct labels occur, and
- for each label i, the distance between any two points labeled i is at least c^{i}.

Proposed by Ricky Liu
6 Find the minimum possible value of

$$
\frac{a}{b^{3}+4}+\frac{b}{c^{3}+4}+\frac{c}{d^{3}+4}+\frac{d}{a^{3}+4}
$$

given that a, b, c, d are nonnegative real numbers such that $a+b+c+d=4$.
Proposed by Titu Andreescu

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

