

AoPS Community

USAMO 2017

www.artofproblemsolving.com/community/c439884

by CantonMathGuy, skipiano, jeff10, DrMath, v_Enhance, lucasxia01, jasonhu4, rrusczyk

Day 1 April 19th

- **1** Prove that there are infinitely many distinct pairs (a, b) of relatively prime integers a > 1 and b > 1 such that $a^b + b^a$ is divisible by a + b.
- **2** Let m_1, m_2, \ldots, m_n be a collection of n positive integers, not necessarily distinct. For any sequence of integers $A = (a_1, \ldots, a_n)$ and any permutation $w = w_1, \ldots, w_n$ of m_1, \ldots, m_n , define an [i]*A*-inversion[/i] of w to be a pair of entries w_i, w_j with i < j for which one of the following conditions holds:

 $-a_i \ge w_i > w_j$ $-w_j > a_i \ge w_i$, or $-w_i > w_j > a_i$.

Show that, for any two sequences of integers $A = (a_1, \ldots, a_n)$ and $B = (b_1, \ldots, b_n)$, and for any positive integer k, the number of permutations of m_1, \ldots, m_n having exactly k A-inversions is equal to the number of permutations of m_1, \ldots, m_n having exactly k B-inversions.

3 Let ABC be a scalene triangle with circumcircle Ω and incenter I. Ray AI meets \overline{BC} at D and meets Ω again at M; the circle with diameter \overline{DM} cuts Ω again at K. Lines MK and BC meet at S, and N is the midpoint of \overline{IS} . The circumcircles of $\triangle KID$ and $\triangle MAN$ intersect at points L_1 and L_2 . Prove that Ω passes through the midpoint of either $\overline{IL_1}$ or $\overline{IL_2}$.

Proposed by Evan Chen

Day 2 April 20th

- **4** Let P_1, P_2, \ldots, P_{2n} be 2n distinct points on the unit circle $x^2 + y^2 = 1$, other than (1, 0). Each point is colored either red or blue, with exactly n red points and n blue points. Let R_1, R_2, \ldots, R_n be any ordering of the red points. Let B_1 be the nearest blue point to R_1 traveling counterclockwise around the circle starting from R_1 . Then let B_2 be the nearest of the remaining blue points to R_2 travelling counterclockwise around the circle from R_2 , and so on, until we have labeled all of the blue points B_1, \ldots, B_n . Show that the number of counterclockwise arcs of the form $R_i \to B_i$ that contain the point (1,0) is independent of the way we chose the ordering R_1, \ldots, R_n of the red points.
- **5** Let **Z** denote the set of all integers. Find all real numbers c > 0 such that there exists a labeling of the lattice points $(x, y) \in \mathbf{Z}^2$ with positive integers for which:

2017 USAMO

AoPS Community

- only finitely many distinct labels occur, and
- for each label i, the distance between any two points labeled i is at least c^i .

Proposed by Ricky Liu

6 Find the minimum possible value of

$$\frac{a}{b^3+4} + \frac{b}{c^3+4} + \frac{c}{d^3+4} + \frac{d}{a^3+4}$$

given that a, b, c, d are nonnegative real numbers such that a + b + c + d = 4.

Proposed by Titu Andreescu

 https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

