

AoPS Community

2017 USAJMO

USAJMO 2017

_

www.artofproblemsolving.com/community/c439885

by CantonMathGuy, skipiano, droid347, v_Enhance, rrusczyk

Day 1 April 19th

1	Prove that there are infinitely many distinct pairs (a, b) of relatively prime integers $a > 1$ and $b > 1$ such that $a^b + b^a$ is divisible by $a + b$.
2	Consider the equation
	$(3x^3 + xy^2)(x^2y + 3y^3) = (x - y)^7$
	(a) Prove that there are infinitely many pairs (x, y) of positive integers satisfying the equation. (b) Describe all pairs (x, y) of positive integers satisfying the equation.
3	Let <i>ABC</i> be an equilateral triangle, and point <i>P</i> on its circumcircle. Let <i>PA</i> and <i>BC</i> intersect at <i>D</i> , <i>PB</i> and <i>AC</i> intersect at <i>E</i> , and <i>PC</i> and <i>AB</i> intersect at <i>F</i> . Prove that the area of $\triangle DEF$ is twice the area of $\triangle ABC$.
	Proposed by Titu Andreescu, Luis Gonzales, Cosmin Pohoata
Day 2	April 20th
4	Are there any triples (a, b, c) of positive integers such that $(a - 2)(b - 2)(c - 2) + 12$ is a prime number that properly divides the positive number $a^2 + b^2 + c^2 + abc - 2017$?
5	Let <i>O</i> and <i>H</i> be the circumcenter and the orthocenter of an acute triangle <i>ABC</i> . Points <i>M</i> and <i>D</i> lie on side <i>BC</i> such that $BM = CM$ and $\angle BAD = \angle CAD$. Ray <i>MO</i> intersects the circumcircle of triangle <i>BHC</i> in point <i>N</i> . Prove that $\angle ADO = \angle HAN$.
6	Let P_1, P_2, \ldots, P_{2n} be $2n$ distinct points on the unit circle $x^2 + y^2 = 1$, other than $(1, 0)$. Each point is colored either red or blue, with exactly n red points and n blue points. Let R_1, R_2, \ldots, R_n be any ordering of the red points. Let B_1 be the nearest blue point to R_1 traveling counterclockwise around the circle starting from R_1 . Then let B_2 be the nearest of the remaining blue points to R_2 travelling counterclockwise around the circle from R_2 , and so on, until we have labeled all of the blue points B_1, \ldots, B_n . Show that the number of counterclockwise arcs of the form $R_i \to B_i$ that contain the point $(1, 0)$ is independent of the way we chose the ordering R_1, \ldots, R_n of the red points.

2017 USAJMO

AoPS Community

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

AoPS Online (AoPS Academy AoPS & Academy