AoPS Community

USAJMO 2017

www.artofproblemsolving.com/community/c439885
by CantonMathGuy, skipiano, droid347, v_Enhance, rrusczyk

Day 1 April 19th

1 Prove that there are infinitely many distinct pairs (a, b) of relatively prime integers $a>1$ and $b>1$ such that $a^{b}+b^{a}$ is divisible by $a+b$.

2 Consider the equation

$$
\left(3 x^{3}+x y^{2}\right)\left(x^{2} y+3 y^{3}\right)=(x-y)^{7}
$$

(a) Prove that there are infinitely many pairs (x, y) of positive integers satisfying the equation.
(b) Describe all pairs (x, y) of positive integers satisfying the equation.
$3 \quad$ Let $A B C$ be an equilateral triangle, and point P on its circumcircle. Let $P A$ and $B C$ intersect at $D, P B$ and $A C$ intersect at E, and $P C$ and $A B$ intersect at F. Prove that the area of $\triangle D E F$ is twice the area of $\triangle A B C$.

Proposed by Titu Andreescu, Luis Gonzales, Cosmin Pohoata
Day 2 April 20th
4 Are there any triples (a, b, c) of positive integers such that $(a-2)(b-2)(c-2)+12$ is a prime number that properly divides the positive number $a^{2}+b^{2}+c^{2}+a b c-2017$?
$5 \quad$ Let O and H be the circumcenter and the orthocenter of an acute triangle $A B C$. Points M and D lie on side $B C$ such that $B M=C M$ and $\angle B A D=\angle C A D$. Ray $M O$ intersects the circumcircle of triangle $B H C$ in point N. Prove that $\angle A D O=\angle H A N$.

6 Let $P_{1}, P_{2}, \ldots, P_{2 n}$ be $2 n$ distinct points on the unit circle $x^{2}+y^{2}=1$, other than $(1,0)$. Each point is colored either red or blue, with exactly n red points and n blue points. Let $R_{1}, R_{2}, \ldots, R_{n}$ be any ordering of the red points. Let B_{1} be the nearest blue point to R_{1} traveling counterclockwise around the circle starting from R_{1}. Then let B_{2} be the nearest of the remaining blue points to R_{2} travelling counterclockwise around the circle from R_{2}, and so on, until we have labeled all of the blue points B_{1}, \ldots, B_{n}. Show that the number of counterclockwise arcs of the form $R_{i} \rightarrow B_{i}$ that contain the point $(1,0)$ is independent of the way we chose the ordering R_{1}, \ldots, R_{n} of the red points.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

