AoPS Community

Mathematical Olympiad 2008

www.artofproblemsolving.com/community/c4408
by thugzmath10

1 Prove that the set $\{1,2, \cdots, 2007\}$ can be expressed as the union of disjoint subsets A_{i} for $i=1,2, \cdots, 223$ such that each A_{i} contains nine elements and the sum of all the elements in each A_{i} is the same.

2 Find the largest integer n for which $\frac{n^{2007}+n^{2006}+\cdots+n^{2}+n+1}{n+2007}$ is an integer.
$3 \quad$ Let P be a point outside a circle Γ, and let the two tangent lines through P touch Γ at A and B. Let C be on the minor arc $A B$, and let ray $P C$ intersect Γ again at D. Let ℓ be the line through B and parallel to $P A$. ℓ intersects $A C$ and $A D$ at E and F, respectively. Prove that B is the midpoint of $E F$.

4 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{2008^{2 x}}{2008+2008^{2 x}}$. Prove that

$$
f\left(\frac{1}{2007}\right)+f\left(\frac{2}{2007}\right)+\cdots+f\left(\frac{2005}{2007}\right)+f\left(\frac{2006}{2007}\right)=1003 .
$$

