AoPS Community

Greece Team Selection Test 2010

www.artofproblemsolving.com/community/c4411
by john111111

1 Solve in positive reals the system: $x+y+z+w=4 \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{w}=5-\frac{1}{x y z w}$
2 In a blackboard there are K circles in a row such that one of the numbers $1, \ldots, K$ is assigned to each circle from the left to the right.
Change of situation of a circle is to write in it or erase the number which is assigned to it.At the beginning no number is written in its own circle.
For every positive divisor d of $K, 1 \leq d \leq K$ we change the situation of the circles in which their assigned numbers are divisible by d,performing for each divisor $d K$ changes of situation. Determine the value of K for which the following holds; when this procedure is applied once for all positive divisors of K,then all numbers $1,2,3, \ldots, K$ are written in the circles they were assigned in.

3 Let $A B C$ be a triangle, O its circumcenter and R the radius of its circumcircle.Denote by O_{1} the symmetric of O with respect to $B C, O_{2}$ the symmetric of O with respect to $A C$ and by O_{3} the symmetric of O with respect to $A B$.
(a)Prove that the circles $C_{1}\left(O_{1}, R\right), C_{2}\left(O_{2}, R\right), C_{3}\left(O_{3}, R\right)$ have a common point.
(b)Denote by T this point.Let l be an arbitary line passing through T which intersects C_{1} at L, C_{2} at M and C_{3} at K.From K, L, M drop perpendiculars to $A B, B C, A C$ respectively.Prove that these perpendiculars pass through a point.

4 Find all functions $f: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$ satisfying $f\left(\frac{f(x)}{f(y)}\right)=\frac{1}{y} f(f(x))$ for all $x, y \in \mathbb{R}^{*}$ and are strictly monotone in $(0,+\infty)$

