AoPS Community

Romania National Olympiad 2001

www.artofproblemsolving.com/community/c4414
by WakeUp, nayel

- \quad Grade level 7

1 Show that there exist no integers a and b such that $a^{3}+a^{2} b+a b^{2}+b^{3}=2001$.
2 Let a and b be real, positive and distinct numbers. We consider the set:

$$
M=\{a x+b y \mid x, y \in \mathbb{R}, x>0, y>0, x+y=1\}
$$

Prove that:
(i) $\frac{2 a b}{a+b} \in M$;
(ii) $\sqrt{a b} \in M$.

3 We consider a right trapezoid $A B C D$, in which $A B \| C D, A B>C D, A D \perp A B$ and $A D>C D$. The diagonals $A C$ and $B D$ intersect at O. The parallel through O to $A B$ intersects $A D$ in E and $B E$ intersects $C D$ in F. Prove that $C E \perp A F$ if and only if $A B \cdot C D=A D^{2}-C D^{2}$.

4 Consider the acute angle $A B C$. On the half-line $B C$ we consider the distinct points P and Q whose projections onto the line $A B$ are the points M and N. Knowing that $A P=A Q$ and $A M^{2}-A N^{2}=B N^{2}-B M^{2}$, find the angle $A B C$.

- \quad Grade level 8

1 Determine all real numbers a and b such that $a+b \in \mathbb{Z}$ and $a^{2}+b^{2}=2$.
2 For every rational number $m>0$ we consider the function $f_{m}: \mathbb{R} \rightarrow \mathbb{R}, f_{m}(x)=\frac{1}{m} x+m$. Denote by G_{m} the graph of the function f_{m}. Let p, q, r be positive rational numbers.
a) Show that if p and q are distinct then $G_{p} \cap G_{q}$ is non-empty.
b) Show that if $G_{p} \cap G_{q}$ is a point with integer coordinates, then p and q are integer numbers.
c) Show that if p, q, r are consecutive natural numbers, then the area of the triangle determined by intersections of G_{p}, G_{q} and G_{r} is equal to 1 .

3 We consider the points A, B, C, D, not in the same plane, such that $A B \perp C D$ and $A B^{2}+$ $C D^{2}=A D^{2}+B C^{2}$.
a) Prove that $A C \perp B D$.
b) Prove that if $C D<B C<B D$, then the angle between the planes $(A B C)$ and $(A D C)$ is greater than 60°.

4 In the cube $A B C D A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, with side a, the plane $\left(A B^{\prime} D^{\prime}\right)$ intersects the planes $\left(A^{\prime} B C\right),\left(A^{\prime} C D\right),\left(A^{\prime} D B\right)$ after the lines d_{1}, d_{2} and d_{3} respectively.
a) Show that the lines d_{1}, d_{2}, d_{3} intersect pairwise.
b) Determine the area of the triangle formed by these three lines.

- \quad Grade level 9

1 Let A be a set of real numbers which verifies:

$$
\text { a) } \left.1 \in A b) x \in A \Longrightarrow x^{2} \in A c\right) x^{2}-4 x+4 \in A \Longrightarrow x \in A
$$

Show that $2000+\sqrt{2001} \in A$.
2 Let $A B C$ be a triangle $\left(A=90^{\circ}\right)$ and $D \in(A C)$ such that $B D$ is the bisector of B. Prove that $B C-B D=2 A B$ if and only if

$$
\frac{1}{B D}-\frac{1}{B C}=\frac{1}{2 A B}
$$

3 Let $n \in \mathbb{N}^{*}$ and $v_{1}, v_{2}, \ldots, v_{n}$ be vectors in the plane with lengths less than or equal to 1 . Prove that there exists $\xi_{1}, \xi_{2}, \ldots, \xi_{n} \in\{-1,1\}$ such that

$$
\left|\xi_{1} v_{1}+\xi_{2} v_{2}+\ldots+\xi_{n} v_{n}\right| \leq \sqrt{2}
$$

4 Determine the ordered systems (x, y, z) of positive rational numbers for which $x+\frac{1}{y}, y+\frac{1}{z}$ and $z+\frac{1}{x}$ are integers.

- \quad Grade level 10

1 Let a and b be complex non-zero numbers and z_{1}, z_{2} the roots of the polynomials $X^{2}+a X+b$. Show that $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$ if and only if there exists a real number $\lambda \geq 4$ such that $a^{2}=\lambda b$.

2 In the tetrahedron $O A B C$ we denote by α, β, γ the measures of the angles $\angle B O C, \angle C O A$, and $\angle A O B$, respectively. Prove the inequality

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma<1+2 \cos \alpha \cos \beta \cos \gamma
$$

3 Let m, k be positive integers, $k<m$ and M a set with m elements. Prove that the maximal number of subsets $A_{1}, A_{2}, \ldots, A_{p}$ of M for which $A_{i} \cap A_{j}$ has at most k elements, for every $1 \leq i<j \leq p$, equals

$$
p_{\max }=\binom{m}{0}+\binom{m}{1}+\binom{m}{2}+\ldots+\binom{m}{k+1}
$$

4 Let $n \geq 2$ be an even integer and a, b real numbers such that $b^{n}=3 a+1$. Show that the polynomial $P(X)=\left(X^{2}+X+1\right)^{n}-X^{n}-a$ is divisible by $Q(X)=X^{3}+X^{2}+X+b$ if and only if $b=1$.

- \quad Grade level 11

1 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ a continuous function, derivable on $R \backslash\left\{x_{0}\right\}$, having finite side derivatives in x_{0}. Show that there exists a derivable function $g: \mathbb{R} \rightarrow \mathbb{R}$, a linear function $h: \mathbb{R} \rightarrow \mathbb{R}$ and $\alpha \in\{-1,0,1\}$ such that:

$$
f(x)=g(x)+\alpha|h(x)|, \forall x \in \mathbb{R}
$$

2 We consider a matrix $A \in M_{n}(\mathbf{C})$ with rank r, where $n \geq 2$ and $1 \leq r \leq n-1$.
a) Show that there exist $B \in M_{n, r}(\mathbf{C}), C \in M_{r, n}(\mathbf{C})$, with $B=C=r$, such that $A=B C$.
b) Show that the matrix A verifies a polynomial equation of degree $r+1$, with complex coefficients.

3 Let $f: \mathbb{R} \rightarrow[0, \infty)$ be a function with the property that $|f(x)-f(y)| \leq|x-y|$ for every $x, y \in \mathbb{R}$. Show that:
a) If $\lim _{n \rightarrow \infty} f(x+n)=\infty$ for every $x \in \mathbb{R}$, then $\lim _{x \rightarrow \infty}=\infty$.
b) If $\lim _{n \rightarrow \infty} f(x+n)=\alpha, \alpha \in[0, \infty)$ for every $x \in \mathbb{R}$, then $\lim _{x \rightarrow \infty}=\alpha$.
$4 \quad$ The continuous function $f:[0,1] \rightarrow \mathbb{R}$ has the property:

$$
\lim _{x \rightarrow \infty} n\left(f\left(x+\frac{1}{n}\right)-f(x)\right)=0
$$

for every $x \in[0,1)$.
Show that:
a) For every $\epsilon>0$ and $\lambda \in(0,1)$, we have:

$$
\sup \{x \in[0, \lambda)||f(x)-f(0)| \leq \epsilon x\}=\lambda
$$

b) f is a constant function.

- \quad Grade level 12

1 a) Consider the polynomial $P(X)=X^{5} \in \mathbb{R}[X]$. Show that for every $\alpha \in \mathbb{R}^{*}$, the polynomial $P(X+\alpha)-P(X)$ has no real roots.
b) Let $P(X) \in \mathbb{R}[X]$ be a polynomial of degree $n \geq 2$, with real and distinct roots. Show that there exists $\alpha \in \mathbb{Q}^{*}$ such that the polynomial $P(X+\alpha)-P(X)$ has only real roots.

2 Let A be a finite ring. Show that there exists two natural numbers m, p where $m>p \geq 1$, such that $a^{m}=a^{p}$ for all $a \in A$.

3 Let $f:[-1,1] \rightarrow \mathbb{R}$ be a continuous function. Show that:
a) if $\int_{0}^{1} f(\sin (x+\alpha)) d x=0$, for every $\alpha \in \mathbb{R}$, then $f(x)=0, \forall x \in[-1,1]$.
b) if $\int_{0}^{1} f(\sin (n x)) d x=0$, for every $n \in \mathbb{Z}$, then $f(x)=0, \forall x \in[-1,1]$.

4 Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a periodical function, with period 1 , integrable on $[0,1]$. For a strictly increasing and unbounded sequence $\left(x_{n}\right)_{n \geq 0}, x_{0}=0$, with $\lim _{n \rightarrow \infty}\left(x_{n+1}-x_{n}\right)=0$, we denote $r(n)=\max \left\{k \mid x_{k} \leq n\right\}$.
a) Show that:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{r(n)}\left(x_{k}-x_{k+1}\right) f\left(x_{k}\right)=\int_{0}^{1} f(x) d x
$$

b) Show that:

$$
\lim _{n \rightarrow \infty} \frac{1}{\ln n} \sum_{k=1}^{r(n)} \frac{f(\ln k)}{k}=\int_{0}^{1} f(x) d x
$$

