

Romania National Olympiad 2001

www.artofproblemsolving.com/community/c4414 by WakeUp, nayel

Grade level 7 Show that there exist no integers *a* and *b* such that $a^3 + a^2b + ab^2 + b^3 = 2001$. 1 Let *a* and *b* be real, positive and distinct numbers. We consider the set: 2 $M = \{ax + by \mid x, y \in \mathbb{R}, x > 0, y > 0, x + y = 1\}$ Prove that: (i) $\frac{2ab}{a+b} \in M;$ (ii) $\sqrt{ab} \in M$. 3 We consider a right trapezoid ABCD, in which $AB||CD, AB > CD, AD \perp AB$ and AD > CD. The diagonals AC and BD intersect at O. The parallel through O to AB intersects AD in E and BE intersects CD in F. Prove that $CE \perp AF$ if and only if $AB \cdot CD = AD^2 - CD^2$. Consider the acute angle ABC. On the half-line BC we consider the distinct points P and Q4 whose projections onto the line AB are the points M and N. Knowing that AP = AQ and $AM^2 - AN^2 = BN^2 - BM^2$, find the angle ABC. Grade level 8 _ Determine all real numbers a and b such that $a + b \in \mathbb{Z}$ and $a^2 + b^2 = 2$. 1 For every rational number m > 0 we consider the function $f_m : \mathbb{R} \to \mathbb{R}, f_m(x) = \frac{1}{m}x + m$. 2 Denote by G_m the graph of the function f_m . Let p, q, r be positive rational numbers. a) Show that if p and q are distinct then $G_p \cap G_q$ is non-empty. b) Show that if $G_p \cap G_q$ is a point with integer coordinates, then p and q are integer numbers. c) Show that if p, q, r are consecutive natural numbers, then the area of the triangle determined by intersections of G_p, G_q and G_r is equal to 1. We consider the points A, B, C, D, not in the same plane, such that $AB \perp CD$ and $AB^2 +$ 3 $CD^2 = AD^2 + BC^2.$

a) Prove that $AC \perp BD$.

2001 Romania National Olympiad

b) Prove that if CD < BC < BD, then the angle between the planes (ABC) and (ADC) is greater than 60° .

- 4 In the cube ABCDA'B'C'D', with side a, the plane (AB'D') intersects the planes (A'BC), (A'CD), (A'DB) after the lines d_1 , d_2 and d_3 respectively.
 - a) Show that the lines d_1, d_2, d_3 intersect pairwise.
 - b) Determine the area of the triangle formed by these three lines.
- Grade level 9
- **1** Let *A* be a set of real numbers which verifies:

a)
$$1 \in Ab$$
) $x \in A \implies x^2 \in Ac$) $x^2 - 4x + 4 \in A \implies x \in A$

Show that $2000 + \sqrt{2001} \in A$.

2 Let ABC be a triangle $(A = 90^{\circ})$ and $D \in (AC)$ such that BD is the bisector of B. Prove that BC - BD = 2AB if and only if

$$\frac{1}{BD} - \frac{1}{BC} = \frac{1}{2AB}$$

3 Let $n \in \mathbb{N}^*$ and v_1, v_2, \ldots, v_n be vectors in the plane with lengths less than or equal to 1. Prove that there exists $\xi_1, \xi_2, \ldots, \xi_n \in \{-1, 1\}$ such that

$$|\xi_1 v_1 + \xi_2 v_2 + \ldots + \xi_n v_n| \le \sqrt{2}$$

4 Determine the ordered systems (x, y, z) of positive rational numbers for which $x + \frac{1}{y}, y + \frac{1}{z}$ and $z + \frac{1}{x}$ are integers.

- Grade level 10

- 1 Let *a* and *b* be complex non-zero numbers and z_1, z_2 the roots of the polynomials $X^2 + aX + b$. Show that $|z_1 + z_2| = |z_1| + |z_2|$ if and only if there exists a real number $\lambda \ge 4$ such that $a^2 = \lambda b$.
- **2** In the tetrahedron OABC we denote by α, β, γ the measures of the angles $\angle BOC, \angle COA$, and $\angle AOB$, respectively. Prove the inequality

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma < 1 + 2\cos\alpha \cos\beta \cos\gamma$$

2001 Romania National Olympiad

3 Let m, k be positive integers, k < m and M a set with m elements. Prove that the maximal number of subsets A_1, A_2, \ldots, A_p of M for which $A_i \cap A_j$ has at most k elements, for every $1 \le i < j \le p$, equals

$$p_{max} = \binom{m}{0} + \binom{m}{1} + \binom{m}{2} + \ldots + \binom{m}{k+1}$$

- 4 Let $n \ge 2$ be an even integer and a, b real numbers such that $b^n = 3a + 1$. Show that the polynomial $P(X) = (X^2 + X + 1)^n X^n a$ is divisible by $Q(X) = X^3 + X^2 + X + b$ if and only if b = 1.
- Grade level 11
- 1 Let $f : \mathbb{R} \to \mathbb{R}$ a continuous function, derivable on $R \setminus \{x_0\}$, having finite side derivatives in x_0 . Show that there exists a derivable function $g : \mathbb{R} \to \mathbb{R}$, a linear function $h : \mathbb{R} \to \mathbb{R}$ and $\alpha \in \{-1, 0, 1\}$ such that:

$$f(x) = g(x) + \alpha |h(x)|, \ \forall x \in \mathbb{R}$$

2 We consider a matrix $A \in M_n(\mathbf{C})$ with rank r, where $n \ge 2$ and $1 \le r \le n-1$.

a) Show that there exist $B \in M_{n,r}(\mathbf{C}), C \in M_{r,n}(\mathbf{C})$, with B = C = r, such that A = BC.

b) Show that the matrix A verifies a polynomial equation of degree r + 1, with complex coefficients.

3 Let $f : \mathbb{R} \to [0, \infty)$ be a function with the property that $|f(x) - f(y)| \le |x - y|$ for every $x, y \in \mathbb{R}$. Show that:

a) If $\lim_{n\to\infty} f(x+n) = \infty$ for every $x \in \mathbb{R}$, then $\lim_{x\to\infty} = \infty$.

b) If $\lim_{n\to\infty} f(x+n) = \alpha, \alpha \in [0,\infty)$ for every $x \in \mathbb{R}$, then $\lim_{x\to\infty} = \alpha$.

4 The continuous function $f : [0, 1] \to \mathbb{R}$ has the property:

$$\lim_{x \to \infty} n\left(f\left(x + \frac{1}{n}\right) - f(x)\right) = 0$$

for every $x \in [0, 1)$.

Show that:

a) For every $\epsilon > 0$ and $\lambda \in (0, 1)$, we have:

$$\sup \left\{ x \in [0,\lambda) \mid |f(x) - f(0)| \le \epsilon x \right\} = \lambda$$

b) f is a constant function.

2001 Romania National Olympiad

- Grade level 12

1 a) Consider the polynomial $P(X) = X^5 \in \mathbb{R}[X]$. Show that for every $\alpha \in \mathbb{R}^*$, the polynomial $P(X + \alpha) - P(X)$ has no real roots.

b) Let $P(X) \in \mathbb{R}[X]$ be a polynomial of degree $n \ge 2$, with real and distinct roots. Show that there exists $\alpha \in \mathbb{Q}^*$ such that the polynomial $P(X + \alpha) - P(X)$ has only real roots.

- **2** Let *A* be a finite ring. Show that there exists two natural numbers m, p where $m > p \ge 1$, such that $a^m = a^p$ for all $a \in A$.
- **3** Let $f : [-1, 1] \to \mathbb{R}$ be a continuous function. Show that: **a)** if $\int_0^1 f(\sin(x + \alpha)) dx = 0$, for every $\alpha \in \mathbb{R}$, then f(x) = 0, $\forall x \in [-1, 1]$. **b)** if $\int_0^1 f(\sin(nx)) dx = 0$, for every $n \in \mathbb{Z}$, then f(x) = 0, $\forall x \in [-1, 1]$.
- **4** Let $f : [0, \infty) \to \mathbb{R}$ be a periodical function, with period 1, integrable on [0, 1]. For a strictly increasing and unbounded sequence $(x_n)_{n\geq 0}$, $x_0 = 0$, with $\lim_{n\to\infty} (x_{n+1} x_n) = 0$, we denote $r(n) = \max\{k \mid x_k \leq n\}$.

a) Show that:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{r(n)} (x_k - x_{k+1}) f(x_k) = \int_0^1 f(x) \, dx$$

b) Show that:

$$\lim_{n \to \infty} \frac{1}{\ln n} \sum_{k=1}^{r(n)} \frac{f(\ln k)}{k} = \int_0^1 f(x) \, dx$$

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.