Art of Problem Solving

AoPS Community

Romania National Olympiad 2002

www.artofproblemsolving.com/community/c4415
by WakeUp, perfect_radio, tranthanhnam

- \quad Grade level 7

1 Eight card players are seated around a table. One remarks that at some moment, any player and his two neighbours have altogether an odd number of winning cards.
Show that any player has at that moment at least one winning card.
2 Prove that any real number $0<x<1$ can be written as a difference of two positive and less than 1 irrational numbers.

3 Let $A B C D$ be a trapezium and $A B$ and $C D$ be it's parallel edges. Find, with proof, the set of interior points P of the trapezium which have the property that P belongs to at least two lines each intersecting the segments $A B$ and $C D$ and each dividing the trapezium in two other trapezoids with equal areas.

4 a) An equilateral triangle of sides a is given and a triangle $M N P$ is constructed under the following conditions: $P \in(A B), M \in(B C), N \in(A C)$, such that $M P \perp A B, N M \perp B C$ and $P N \perp A C$. Find the length of the segment $M P$.b) Show that for any acute triangle $A B C$ one can find points $P \in(A B), M \in(B C), N \in(A C)$ such that $M P \perp A B, N M \perp B C$ and $P N \perp A C$.

- \quad Grade level 8

1 For any number $n \in \mathbb{N}, n \geq 2$, denote by $P(n)$ the number of pairs (a, b) whose elements are of positive integers such that

$$
\frac{n}{a} \in(0,1), \quad \frac{a}{b} \in(1,2) \quad \text { and } \quad \frac{b}{n} \in(2,3) .
$$

a) Calculate $P(3) . b)$ Find n such that $P(n)=2002$.

2 Given real numbers a, c, d show that there exists at most one function $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfies:

$$
f(a x+c)+d \leq x \leq f(x+d)+c \quad \text { for any } x \in \mathbb{R}
$$

3 Let $[A B C D E F]$ be a frustum of a regular pyramid. Let G and G^{\prime} be the centroids of bases $A B C$ and $D E F$ respectively. It is known that $A B=36, D E=12$ and $G G^{\prime}=35$. a) Prove that the planes $(A B F),(B C D),(C A E)$ have a common point P, and the planes $(D E C),(E F A),(F D B)$ have a common point P^{\prime}, both situated on $G G^{\prime}$. b) Find the length of the segment [$P P^{\prime}$].

4 The right prism $\left[A_{1} A_{2} A_{3} \ldots A_{n} A_{1}^{\prime} A_{2}^{\prime} A_{3}^{\prime} \ldots A_{n}^{\prime}\right], n \in \mathbb{N}, n \geq 3$, has a convex polygon as its base. It is known that $A_{1} A_{2}^{\prime} \perp A_{2} A_{3}^{\prime}, A_{2} A_{3}^{\prime} \perp A_{3} A_{4}^{\prime}, \ldots A_{n-1} A_{n}^{\prime} \perp A_{n} A_{1}^{\prime}, A_{n} A_{1}^{\prime} \perp A_{1} A_{2}^{\prime}$. Show that: a) $n=3 ; b$) the prism is regular.

- \quad Grade level 9

1 Let $a b+b c+c a=1$. Show that

$$
\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a} \geq \sqrt{3}+\frac{a b}{a+b}+\frac{b c}{b+c}+\frac{c a}{c+a}
$$

2 Let $A B C$ be a right triangle where $\measuredangle A=90^{\circ}$ and $M \in(A B)$ such that $\frac{A M}{M B}=3 \sqrt{3}-4$. It is known that the symmetric point of M with respect to the line $G I$ lies on $A C$. Find the measure of $\angle B$.

3 Let k and n be positive integers with $n>2$. Show that the equation:

$$
x^{n}-y^{n}=2^{k}
$$

has no positive integer solutions.
$4 \quad$ Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ which satisfy the inequality:

$$
f(3 x+2 y)=f(x) f(y)
$$

for all non-negative integers x, y.

- \quad Grade level 10

1 Let X, Y, Z, T be four points in the plane. The segments [$X Y$] and $[Z T]$ are said to be connected, if there is some point O in the plane such that the triangles $O X Y$ and $O Z T$ are right-angled at O and isosceles.
Let $A B C D E F$ be a convex hexagon such that the pairs of segments $[A B],[C E]$, and $[B D],[E F]$ are connected. Show that the points A, C, D and F are the vertices of a parallelogram and $[B C]$ and $[A E]$ are connected.

2 Find all real polynomials f and g, such that:

$$
\left(x^{2}+x+1\right) \cdot f\left(x^{2}-x+1\right)=\left(x^{2}-x+1\right) \cdot g\left(x^{2}+x+1\right)
$$

for all $x \in \mathbb{R}$.

AoPS Community

3 Find all real numbers a, b, c, d, e in the interval $[-2,2]$, that satisfy.

$$
\begin{aligned}
a+b+c+d+e & =0 \\
a^{3}+b^{3}+c^{3}+d^{3}+e^{3} & =0 \\
a^{5}+b^{5}+c^{5}+d^{5}+e^{5} & =10
\end{aligned}
$$

$4 \quad$ Let $I \subseteq \mathbb{R}$ be an interval and $f: I \rightarrow \mathbb{R}$ a function such that:

$$
|f(x)-f(y)| \leq|x-y|, \quad \text { for all } x, y \in I
$$

Show that f is monotonic on I if and only if, for any $x, y \in I$, either $f(x) \leq f\left(\frac{x+y}{2}\right) \leq f(y)$ or $f(y) \leq f\left(\frac{x+y}{2}\right) \leq f(x)$.

- \quad Grade level 11

1 In the Cartesian plane consider the hyperbola

$$
\Gamma=\left\{M(x, y) \in \mathbb{R}^{2} \left\lvert\, \frac{x^{2}}{4}-y^{2}=1\right.\right\}
$$

and a conic Γ^{\prime}, disjoint from Γ. Let $n\left(\Gamma, \Gamma^{\prime}\right)$ be the maximal number of pairs of points $\left(A, A^{\prime}\right) \in$ $\Gamma \times \Gamma^{\prime}$ such that $A A^{\prime} \leq B B^{\prime}$, for any $\left(B, B^{\prime}\right)$
For each $p \in\{0,1,2,4\}$, find the equation of Γ^{\prime} for which $n\left(\Gamma, \Gamma^{\prime}\right)=p$. Justify the answer.
2 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function that has limits at any point and has no local extrema. Show that: a) f is continuous; b) f is strictly monotone.

3 Let $A \in M_{4}(C)$ be a non-zero matrix. a) If $\operatorname{rank}(A)=r<4$, prove the existence of two invertible matrices $U, V \in M_{4}(C)$, such that:

$$
U A V=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)
$$

where I_{r} is the r-unit matrix. b) Show that if A and A^{2} have the same rank k, then the matrix A^{n} has rank k, for any $n \geq 3$.

4 Let $f:[0,1] \rightarrow[0,1]$ be a continuous and bijective function.
Describe the set:

$$
A=\{f(x)-f(y) \mid x, y \in[0,1] \backslash \mathbb{Q}\}
$$

You are given the result that [i]there is no one-to-one function between the irrational numbers and \mathbb{Q}.[/i]

- \quad Grade level 12

1 Let A be a ring. a) Show that the set $Z(A)=\{a \in A \mid a x=x a$, for all $x \in A\}$ is a subring of the ring A. b) Prove that, if any commutative subring of A is a field, then A is a field.

2 Let $f:[0,1] \rightarrow \mathbb{R}$ be an integrable function such that:

$$
0<\left|\int_{0}^{1} f(x) \mathrm{d} x\right| \leq 1
$$

Show that there exists $x_{1} \neq x_{2}, x_{1}, x_{2} \in[0,1]$, such that:

$$
\int_{x_{1}}^{x_{2}} f(x) \mathrm{d} x=\left(x_{1}-x_{2}\right)^{2002}
$$

3 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous and bounded function such that

$$
x \int_{x}^{x+1} f(t) \mathrm{d} t=\int_{0}^{x} f(t) \mathrm{d} t, \quad \text { for any } x \in \mathbb{R}
$$

Prove that f is a constant function.
4 Let K be a field having $q=p^{n}$ elements, where p is a prime and $n \geq 2$ is an arbitrary integer number. For any $a \in K$, one defines the polynomial $f_{a}=X^{q}-X+a$. Show that: a) $f=$ $\left(X^{q}-X\right)^{q}-\left(X^{q}-X\right)$ is divisible by $\left.f_{1} ; b\right) f_{a}$ has at least p^{n-1} essentially different irreducible factors $K[X]$.

