

_

_

2004 Romania National Olympiad

Romania National Olympiad 2004

www.artofproblemsolving.com/community/c4417

by perfect_radio, Farenhajt, Jan, Gabriel(fr), scorpius119, paladin8, enescu, Myth, mecrazywong, grobber, xirti, Kuba, Kent Merryfield, ZetaX

-	Grade level 7
-	April 5th
1	On the sides AB, AD of the rhombus $ABCD$ are the points E, F such that $AE = DF$. The lines BC, DE intersect at P and CD, BF intersect at Q . Prove that:
	(a) $\frac{PE}{PD} + \frac{QF}{QB} = 1$;
	(b) P, A, Q are collinear.
	Virginia Tica, Vasile Tica
2	The sidelengths of a triangle are a, b, c .
	(a) Prove that there is a triangle which has the sidelengths $\sqrt{a},\sqrt{b},\sqrt{c}.$
	(b) Prove that $\sqrt{ab} + \sqrt{bc} + \sqrt{ca} \le a + b + c < 2\sqrt{ab} + 2\sqrt{bc} + 2\sqrt{ca}$.
3	Let $ABCD$ be an orthodiagonal trapezoid such that $\measuredangle A = 90^{\circ}$ and AB is the larger base. The diagonals intersect at O , $(OE$ is the bisector of $\measuredangle AOD$, $E \in (AD)$ and $EF AB$, $F \in (BC)$. Let P, Q the intersections of the segment EF with AC, BD . Prove that:
	(a) $EP = QF$;
	(b) $EF = AD$.
	Claudiu-Stefan Popa
4	Let $\mathcal{U} = \{(x, y) x, y \in \mathbb{Z}, \ 0 \le x, y < 4\}.$

(a) Prove that we can choose 6 points from \mathcal{U} such that there are no isosceles triangles with the vertices among the chosen points.

(b) Prove that no matter how we choose 7 points from U, there are always three which form an isosceles triangle.

for all $n \ge 4$.

	Radu Gologan, Dinu Serbanescu
-	Grade level 8
-	April 5th
1	Find all non-negative integers n such that there are $a, b \in \mathbb{Z}$ satisfying $n^2 = a + b$ and $n^3 = a^2 + b^2$.
	Lucian Dragomir
2	Prove that the equation $x^2 + y^2 + z^2 + t^2 = 2^{2004}$, where $0 \le x \le y \le z \le t$, has exactly 2 solutions in \mathbb{Z} .
	Mihai Baluna
3	Let $ABCDA'B'C'D'$ be a truncated regular pyramid in which BC' and DA' are perpendicular.
	(a) Prove that $\measuredangle (AB', DA') = 60^{\circ}$;
	(b) If the projection of B' on (ABC) is the center of the incircle of ABC , then prove that $d(CB', AD') = \frac{1}{2}BC'$.
	Mircea Fianu
4	In the interior of a cube of side 6 there are 1001 unit cubes with the faces parallel to the faces of the given cube. Prove that there are 2 unit cubes with the property that the center of one of them lies in the interior or on one of the faces of the other cube.
	Dinu Serbanescu
-	Grade level 9
-	April 5th
1	Find the strictly increasing functions $f : \{1, 2,, 10\} \rightarrow \{1, 2,, 100\}$ such that $x + y$ divides $xf(x) + yf(y)$ for all $x, y \in \{1, 2,, 10\}$.
	Cristinel Mortici
2	Let $P(n)$ be the number of functions $f : \mathbb{R} \to \mathbb{R}$, $f(x) = ax^2 + bx + c$, with $a, b, c \in \{1, 2,, n\}$ and that have the property that $f(x) = 0$ has only integer solutions. Prove that $n < P(n) < n^2$,

© 2019 AoPS Incorporated 2

Laurentiu Panaitopol

3 Let *H* be the orthocenter of the acute triangle *ABC*. Let *BB'* and *CC'* be altitudes of the triangle ($B' \in AC$, $C' \in AB$). A variable line ℓ passing through *H* intersects the segments [*BC'*] and [*CB'*] in *M* and *N*. The perpendicular lines of ℓ from *M* and *N* intersect *BB'* and *CC'* in *P* and *Q*. Determine the locus of the midpoint of the segment [*PQ*].

Gheorghe Szolosy

4 Let $p, q \in \mathbb{N}^*$, $p, q \ge 2$. We say that a set *X* has the property (*S*) if no matter how we choose p subsets $B_i \subset X$, $i = \overline{1, n}$, not necessarily distinct, each with q elements, there is a subset $Y \subset X$ with p elements s.t. the intersection of Y with each of the B_i 's has an element at most, $i = \overline{1, p}$. Prove that:

(a) if p = 4, q = 3 then any set composed of 9 elements doesn't have (S);

(b) any set X composed of pq - q elements doesn't have the property (S);

(c) any set X composed of pq - q + 1 elements has the property (S).

Dan Schwarz

- Grade level 10
- April 5th

1 Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that $|f(x) - f(y)| \le |x - y|$, for all $x, y \in \mathbb{R}$.

Prove that if for any real x, the sequence x, f(x), f(f(x)), ... is an arithmetic progression, then there is $a \in \mathbb{R}$ such that f(x) = x + a, for all $x \in \mathbb{R}$.

2 Let *ABCD* be a tetrahedron in which the opposite sides are equal and form equal angles.

Prove that it is regular.

3 Let
$$n > 2, n \in \mathbb{N}$$
 and $a > 0, a \in \mathbb{R}$ such that $2^a + \log_2 a = n^2$. Prove that:

$$2\cdot \log_2 n > a > 2\cdot \log_2 n - \frac{1}{n}.$$

Radu Gologan

2004 Romania National Olympiad

4 Let $(P_n)_{n\geq 1}$ be an infinite family of planes and $(X_n)_{n\geq 1}$ be a family of non-void, finite sets of points such that $X_n \subset P_n$ and the projection of the set X_{n+1} on the plane P_n is included in the set X_n , for all n.

Prove that there is a sequence of points $(p_n)_{n\geq 1}$ such that $p_n \in P_n$ and p_n is the projection of p_{n+1} on the plane P_n , for all n.

Does the conclusion of the problem remain true if the sets X_n are infinite?

Claudiu Raicu

- Grade level 11
- April 5th
- 1 Let $n \ge 3$ be an integer and F be the focus of the parabola $y^2 = 2px$. A regular polygon $A_1A_2...A_n$ has the center in F and none of its vertices lie on Ox. $(FA_1, (FA_2, ..., (FA_n \text{ intersect the parabola at } B_1, B_2, ..., B_n)$.

Prove that

$$FB_1 + FB_2 + \ldots + FB_n > np.$$

Calin Popescu

2 Let $n \in \mathbb{N}$, $n \geq 2$.

(a) Give an example of two matrices $A, B \in \mathcal{M}_n(\mathbb{C})$ such that

 $\operatorname{rank}(AB) - \operatorname{rank}(BA) = \left\lfloor \frac{n}{2} \right\rfloor.$

(b) Prove that for all matrices $X, Y \in \mathcal{M}_n(\mathbb{C})$ we have

$$\operatorname{rank}(XY) - \operatorname{rank}(YX) \le \left\lfloor \frac{n}{2} \right\rfloor.$$

Ion Savu

3 Let $f : (a,b) \to \mathbb{R}$ be a function with the property that for all $x \in (a,b)$ there is a nondegenerated interval $[a_x, b_x]$ with $a < a_x \le x \le b_x < b$ such that f is constant on $[a_x, b_x]$.

(a) Prove that Im f is finite or numerable.

(b) Find all continuous functions which have the property mentioned in the hypothesis.

2004 Romania National Olympiad

4 (a) Build a function $f : \mathbb{R} \to \mathbb{R}_+$ with the property (\mathcal{P}) , i.e. all $x \in \mathbb{Q}$ are local, strict minimum points.

(b) Build a function $f : \mathbb{Q} \to \mathbb{R}_+$ such that every point is a local, strict minimum point and such that f is unbounded on $I \cap \mathbb{Q}$, where I is a non-degenerate interval.

(c) Let $f : \mathbb{R} \to \mathbb{R}_+$ be a function unbounded on every $I \cap \mathbb{Q}$, where I is a non-degenerate interval. Prove that f doesn't have the property (\mathcal{P}) .

- Grade level 12
- April 5th
- **1** Find all continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that for all $x \in \mathbb{R}$ and for all $n \in \mathbb{N}^*$ we have

$$n^2 \int_x^{x+\frac{1}{n}} f(t) \, dt = nf(x) + \frac{1}{2}.$$

Mihai Piticari

2 Let $f \in \mathbb{Z}[X]$. For an $n \in \mathbb{N}$, $n \ge 2$, we define $f_n : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ through $f_n(\widehat{x}) = \widehat{f(x)}$, for all $x \in \mathbb{Z}$.

(a) Prove that f_n is well defined.

(b) Find all polynomials $f \in \mathbb{Z}[X]$ such that for all $n \in \mathbb{N}$, $n \ge 2$, the function f_n is surjective.

Bogdan Enescu

3 Let $f : [0,1] \to \mathbb{R}$ be an integrable function such that

$$\int_0^1 f(x) \, dx = \int_0^1 x f(x) \, dx = 1.$$

Prove that

$$\int_0^1 f^2(x) \, dx \ge 4.$$

lon Rasa

4 Let \mathcal{K} be a field of characteristic $p, p \equiv 1 \pmod{4}$.

(a) Prove that -1 is the square of an element from \mathcal{K} .

2004 Romania National Olympiad

(b) Prove that any element $\neq 0$ from \mathcal{K} can be written as the sum of three squares, each $\neq 0$, of elements from \mathcal{K} .

(c) Can 0 be written in the same way?

Marian Andronache

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.