AoPS Community

Romania National Olympiad 2004

www.artofproblemsolving.com/community/c4417
by perfect_radio, Farenhajt, Jan, Gabriel(fr), scorpius119, paladin8, enescu, Myth, mecrazywong, grobber, xirti, Kuba, Kent Merryfield, ZetaX

- \quad Grade level 7
- April 5th

1 On the sides $A B, A D$ of the rhombus $A B C D$ are the points E, F such that $A E=D F$. The lines $B C, D E$ intersect at P and $C D, B F$ intersect at Q. Prove that:
(a) $\frac{P E}{P D}+\frac{Q F}{Q B}=1$;
(b) P, A, Q are collinear.

Virginia Tica, Vasile Tica

2 The sidelengths of a triangle are a, b, c.
(a) Prove that there is a triangle which has the sidelengths $\sqrt{a}, \sqrt{b}, \sqrt{c}$.
(b) Prove that $\sqrt{a b}+\sqrt{b c}+\sqrt{c a} \leq a+b+c<2 \sqrt{a b}+2 \sqrt{b c}+2 \sqrt{c a}$.

3 Let $A B C D$ be an orthodiagonal trapezoid such that $\measuredangle A=90^{\circ}$ and $A B$ is the larger base. The diagonals intersect at $O,(O E$ is the bisector of $\measuredangle A O D, E \in(A D)$ and $E F \| A B, F \in(B C)$. Let P, Q the intersections of the segment $E F$ with $A C, B D$. Prove that:
(a) $E P=Q F$;
(b) $E F=A D$.

Claudiu-Stefan Popa
$4 \quad$ Let $\mathcal{U}=\{(x, y) \mid x, y \in \mathbb{Z}, 0 \leq x, y<4\}$.
(a) Prove that we can choose 6 points from \mathcal{U} such that there are no isosceles triangles with the vertices among the chosen points.
(b) Prove that no matter how we choose 7 points from \mathcal{U}, there are always three which form an isosceles triangle.

Radu Gologan, Dinu Serbanescu

- \quad Grade level 8

- April 5th

1 Find all non-negative integers n such that there are $a, b \in \mathbb{Z}$ satisfying $n^{2}=a+b$ and $n^{3}=$ $a^{2}+b^{2}$.

Lucian Dragomir

2 Prove that the equation $x^{2}+y^{2}+z^{2}+t^{2}=2^{2004}$, where $0 \leq x \leq y \leq z \leq t$, has exactly 2 solutions in \mathbb{Z}.

Mihai Baluna

3 Let $A B C D A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ be a truncated regular pyramid in which $B C^{\prime}$ and $D A^{\prime}$ are perpendicular.
(a) Prove that $\measuredangle\left(A B^{\prime}, D A^{\prime}\right)=60^{\circ}$;
(b) If the projection of B^{\prime} on $(A B C)$ is the center of the incircle of $A B C$, then prove that $d\left(C B^{\prime}, A D^{\prime}\right)=\frac{1}{2} B C^{\prime}$.

Mircea Fianu

4 In the interior of a cube of side 6 there are 1001 unit cubes with the faces parallel to the faces of the given cube. Prove that there are 2 unit cubes with the property that the center of one of them lies in the interior or on one of the faces of the other cube.

Dinu Serbanescu

- \quad Grade level 9
- April 5th

1 Find the strictly increasing functions $f:\{1,2, \ldots, 10\} \rightarrow\{1,2, \ldots, 100\}$ such that $x+y$ divides $x f(x)+y f(y)$ for all $x, y \in\{1,2, \ldots, 10\}$.

Cristinel Mortici
2 Let $P(n)$ be the number of functions $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a x^{2}+b x+c$, with $a, b, c \in\{1,2, \ldots, n\}$ and that have the property that $f(x)=0$ has only integer solutions. Prove that $n<P(n)<n^{2}$, for all $n \geq 4$.

Laurentiu Panaitopol

3 Let H be the orthocenter of the acute triangle $A B C$. Let $B B^{\prime}$ and $C C^{\prime}$ be altitudes of the triangle ($B^{\prime} \in A C, C^{\prime} \in A B$). A variable line ℓ passing through H intersects the segments [$\left.B C^{\prime}\right]$ and $\left[C B^{\prime}\right]$ in M and N. The perpendicular lines of ℓ from M and N intersect $B B^{\prime}$ and $C C^{\prime}$ in P and Q. Determine the locus of the midpoint of the segment $[P Q]$.

Gheorghe Szolosy

4 Let $p, q \in \mathbb{N}^{*}, p, q \geq 2$. We say that a set X has the property (\mathcal{S}) if no matter how we choose p subsets $B_{i} \subset X, i=\overline{1, n}$, not necessarily distinct, each with q elements, there is a subset $Y \subset X$ with p elements s.t. the intersection of Y with each of the B_{i} 's has an element at most, $i=\overline{1, p}$. Prove that:
(a) if $p=4, q=3$ then any set composed of 9 elements doesn't have (\mathcal{S});
(b) any set X composed of $p q-q$ elements doesn't have the property (\mathcal{S});
(c) any set X composed of $p q-q+1$ elements has the property (\mathcal{S}).

Dan Schwarz

- \quad Grade level 10
- April 5th
$1 \quad$ Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $|f(x)-f(y)| \leq|x-y|$, for all $x, y \in \mathbb{R}$.
Prove that if for any real x, the sequence $x, f(x), f(f(x)), \ldots$ is an arithmetic progression, then there is $a \in \mathbb{R}$ such that $f(x)=x+a$, for all $x \in \mathbb{R}$.

2 Let $A B C D$ be a tetrahedron in which the opposite sides are equal and form equal angles.
Prove that it is regular.
3 Let $n>2, n \in \mathbb{N}$ and $a>0, a \in \mathbb{R}$ such that $2^{a}+\log _{2} a=n^{2}$. Prove that:

$$
2 \cdot \log _{2} n>a>2 \cdot \log _{2} n-\frac{1}{n}
$$

Radu Gologan

4 Let $\left(P_{n}\right)_{n \geq 1}$ be an infinite family of planes and $\left(X_{n}\right)_{n \geq 1}$ be a family of non-void, finite sets of points such that $X_{n} \subset P_{n}$ and the projection of the set X_{n+1} on the plane P_{n} is included in the set X_{n}, for all n.

Prove that there is a sequence of points $\left(p_{n}\right)_{n \geq 1}$ such that $p_{n} \in P_{n}$ and p_{n} is the projection of p_{n+1} on the plane P_{n}, for all n.

Does the conclusion of the problem remain true if the sets X_{n} are infinite?

Claudiu Raicu

- \quad Grade level 11
- April 5th

1 Let $n \geq 3$ be an integer and F be the focus of the parabola $y^{2}=2 p x$. A regular polygon $A_{1} A_{2} \ldots A_{n}$ has the center in F and none of its vertices lie on $O x$. $F A_{1},\left(F A_{2}, \ldots,\left(F A_{n}\right.\right.$ intersect the parabola at $B_{1}, B_{2}, \ldots, B_{n}$.

Prove that

$$
F B_{1}+F B_{2}+\ldots+F B_{n}>n p
$$

Calin Popescu
2 Let $n \in \mathbb{N}, n \geq 2$.
(a) Give an example of two matrices $A, B \in \mathcal{M}_{n}(\mathbb{C})$ such that

$$
\operatorname{rank}(A B)-\operatorname{rank}(B A)=\left\lfloor\frac{n}{2}\right\rfloor .
$$

(b) Prove that for all matrices $X, Y \in \mathcal{M}_{n}(\mathbb{C})$ we have

$$
\operatorname{rank}(X Y)-\operatorname{rank}(Y X) \leq\left\lfloor\frac{n}{2}\right\rfloor
$$

Ion Savu
3 Let $f:(a, b) \rightarrow \mathbb{R}$ be a function with the property that for all $x \in(a, b)$ there is a nondegenerated interval [a_{x}, b_{x}] with $a<a_{x} \leq x \leq b_{x}<b$ such that f is constant on $\left[a_{x}, b_{x}\right]$.
(a) Prove that $\operatorname{Im} f$ is finite or numerable.
(b) Find all continuous functions which have the property mentioned in the hypothesis.

4 (a) Build a function $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$with the property (\mathcal{P}), i.e. all $x \in \mathbb{Q}$ are local, strict minimum points.
(b) Build a function $f: \mathbb{Q} \rightarrow \mathbb{R}_{+}$such that every point is a local, strict minimum point and such that f is unbounded on $I \cap \mathbb{Q}$, where I is a non-degenerate interval.
(c) Let $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$be a function unbounded on every $I \cap \mathbb{Q}$, where I is a non-degenerate interval. Prove that f doesn't have the property (\mathcal{P}).

- \quad Grade level 12
- April 5th

1 Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x \in \mathbb{R}$ and for all $n \in \mathbb{N}^{*}$ we have

$$
n^{2} \int_{x}^{x+\frac{1}{n}} f(t) d t=n f(x)+\frac{1}{2}
$$

Mihai Piticari

2 Let $f \in \mathbb{Z}[X]$. For an $n \in \mathbb{N}, n \geq 2$, we define $f_{n}: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ through $f_{n}(\widehat{x})=\widehat{f(x)}$, for all $x \in \mathbb{Z}$.
(a) Prove that f_{n} is well defined.
(b) Find all polynomials $f \in \mathbb{Z}[X]$ such that for all $n \in \mathbb{N}, n \geq 2$, the function f_{n} is surjective.

Bogdan Enescu

3 Let $f:[0,1] \rightarrow \mathbb{R}$ be an integrable function such that

$$
\int_{0}^{1} f(x) d x=\int_{0}^{1} x f(x) d x=1
$$

Prove that

$$
\int_{0}^{1} f^{2}(x) d x \geq 4
$$

Ion Rasa
$4 \quad$ Let \mathcal{K} be a field of characteristic $p, p \equiv 1(\bmod 4)$.
(a) Prove that -1 is the square of an element from \mathcal{K}.
(b) Prove that any element $\neq 0$ from \mathcal{K} can be written as the sum of three squares, each $\neq 0$, of elements from \mathcal{K}.
(c) Can 0 be written in the same way?

Marian Andronache

