AoPS Community

Romania National Olympiad 2006

www.artofproblemsolving.com/community/c4419
by Valentin Vornicu, perfect_radio, Cezar Lupu

- \quad Grade level 7
- April 17th

1 Let $A B C$ be a triangle and the points M and N on the sides $A B$ respectively $B C$, such that 2 . $\frac{C N}{B C}=\frac{A M}{A B}$. Let P be a point on the line $A C$. Prove that the lines $M N$ and $N P$ are perpendicular if and only if $P N$ is the interior angle bisector of $\angle M P C$.

2 A square of side n is formed from n^{2} unit squares, each colored in red, yellow or green. Find minimal n, such that for each coloring, there exists a line and a column with at least 3 unit squares of the same color (on the same line or column).

3 In the acute-angle triangle $A B C$ we have $\angle A C B=45^{\circ}$. The points A_{1} and B_{1} are the feet of the altitudes from A and B, and H is the orthocenter of the triangle. We consider the points D and E on the segments $A A_{1}$ and $B C$ such that $A_{1} D=A_{1} E=A_{1} B_{1}$. Prove that
a) $A_{1} B_{1}=\sqrt{\frac{A_{1} B^{2}+A_{1} C^{2}}{2}}$;
b) $C H=D E$.

4 Let A be a set of positive integers with at least 2 elements. It is given that for any numbers $a>b, a, b \in A$ we have $\frac{[a, b]}{a-b} \in A$, where by $[a, b]$ we have denoted the least common multiple of a and b. Prove that the set A has exactly two elements.

Marius Gherghu, Slatina

- \quad Grade level 8
- April 17th

1 We consider a prism with 6 faces, 5 of which are circumscriptible quadrilaterals. Prove that all the faces of the prism are circumscriptible quadrilaterals.

2 Let n be a positive integer. Prove that there exists an integer $k, k \geq 2$, and numbers $a_{i} \in\{-1,1\}$, such that

$$
n=\sum_{1 \leq i<j \leq k} a_{i} a_{j} .
$$

3 Let $A B C D A_{1} B_{1} C_{1} D_{1}$ be a cube and P a variable point on the side $[A B]$. The perpendicular plane on $A B$ which passes through P intersects the line $A C^{\prime}$ in Q. Let M and N be the midpoints of the segments $A^{\prime} P$ and $B Q$ respectively.
a) Prove that the lines $M N$ and $B C^{\prime}$ are perpendicular if and only if P is the midpoint of $A B$.
b) Find the minimal value of the angle between the lines $M N$ and $B C^{\prime}$.

4 Let $a, b, c \in\left[\frac{1}{2}, 1\right]$. Prove that

$$
2 \leq \frac{a+b}{1+c}+\frac{b+c}{1+a}+\frac{c+a}{1+b} \leq 3
$$

selected by Mircea Lascu

- \quad Grade level 9
- April 17th

1 Find the maximal value of

$$
\left(x^{3}+1\right)\left(y^{3}+1\right),
$$

where $x, y \in \mathbb{R}, x+y=1$.
Dan Schwarz
2 Let $A B C$ and $D B C$ be isosceles triangle with the base $B C$. We know that $\angle A B D=\frac{\pi}{2}$. Let M be the midpoint of $B C$. The points E, F, P are chosen such that $E \in(A B), P \in(M C)$, $C \in(A F)$, and $\measuredangle B D E=\measuredangle A D P=\measuredangle C D F$. Prove that P is the midpoint of $E F$ and $D P \perp E F$.

3 We have a quadrilateral $A B C D$ inscribed in a circle of radius r, for which there is a point P on $C D$ such that $C B=B P=P A=A B$.
(a) Prove that there are points A, B, C, D, P which fulfill the above conditions.
(b) Prove that $P D=r$.

Virgil Nicula
$42 n$ students ($n \geq 5$) participated at table tennis contest, which took 4 days. In every day, every student played a match. (It is possible that the same pair meets twice or more times, in different days) Prove that it is possible that the contest ends like this:

- there is only one winner;
- there are 3 students on the second place;
- no student lost all 4 matches.

How many students won only a single match and how many won exactly 2 matches? (In the above conditions)

- \quad Grade level 10

- April 17th

1 Let M be a set composed of n elements and let $\mathcal{P}(M)$ be its power set. Find all functions $f: \mathcal{P}(M) \rightarrow\{0,1,2, \ldots, n\}$ that have the properties
(a) $f(A) \neq 0$, for $A \neq \phi$;
(b) $f(A \cup B)=f(A \cap B)+f(A \Delta B)$, for all $A, B \in \mathcal{P}(M)$, where $A \Delta B=(A \cup B) \backslash(A \cap B)$.

2 Prove that for all $a, b \in\left(0, \frac{\pi}{4}\right)$ and $n \in \mathbb{N}^{*}$ we have

$$
\frac{\sin ^{n} a+\sin ^{n} b}{(\sin a+\sin b)^{n}} \geq \frac{\sin ^{n} 2 a+\sin ^{n} 2 b}{(\sin 2 a+\sin 2 b)^{n}}
$$

3 Prove that among the elements of the sequence $(\lfloor n \sqrt{2}\rfloor+\lfloor n \sqrt{3}\rfloor)_{n \geq 0}$ are an infinity of even numbers and an infinity of odd numbers.

4 Let $n \in \mathbb{N}, n \geq 2$. Determine n sets $A_{i}, 1 \leq i \leq n$, from the plane, pairwise disjoint, such that:
(a) for every circle \mathcal{C} from the plane and for every $i \in\{1,2, \ldots, n\}$ we have $A_{i} \cap \operatorname{Int}(\mathcal{C}) \neq \phi$;
(b) for all lines d from the plane and every $i \in\{1,2, \ldots, n\}$, the projection of A_{i} on d is not d.

- \quad Grade level 11
- April 17th

1 Let A be a $n \times n$ matrix with complex elements and let A^{\star} be the classical adjoint of A. Prove that if there exists a positive integer m such that $\left(A^{\star}\right)^{m}=0_{n}$ then $\left(A^{\star}\right)^{2}=0_{n}$.

Marian Ionescu, Pitesti

2 We define a pseudo-inverse $B \in \mathcal{M}_{n}(\mathbb{C})$ of a matrix $A \in \mathcal{M}_{n}(\mathbb{C})$ a matrix which fulfills the relations

$$
A=A B A \quad \text { and } \quad B=B A B .
$$

a) Prove that any square matrix has at least a pseudo-inverse.
b) For which matrix A is the pseudo-inverse unique?

Marius Cavachi

3 We have in the plane the system of points $A_{1}, A_{2}, \ldots, A_{n}$ and $B_{1}, B_{2}, \ldots, B_{n}$, which have different centers of mass. Prove that there is a point P such that

$$
P A_{1}+P A_{2}+\ldots+P A_{n}=P B_{1}+P B_{2}+\ldots+P B_{n}
$$

4 Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a function such that for any $x>0$ the sequence $\{f(n x)\}_{n \geq 0}$ is increasing.
a) If the function is also continuous on $[0,1]$ is it true that f is increasing?
b) The same question if the function is continuous on $\mathbb{Q} \cap[0, \infty)$.

- \quad Grade level 12
- April 17th

1 Let \mathcal{K} be a finite field. Prove that the following statements are equivalent:
(a) $1+1=0$;
(b) for all $f \in \mathcal{K}[X]$ with $\operatorname{deg} f \geq 1, f\left(X^{2}\right)$ is reducible.

2 Prove that

$$
\lim _{n \rightarrow \infty} n\left(\frac{\pi}{4}-n \int_{0}^{1} \frac{x^{n}}{1+x^{2 n}} d x\right)=\int_{0}^{1} f(x) d x
$$

where $f(x)=\frac{\arctan x}{x}$ if $x \in(0,1]$ and $f(0)=1$.
Dorin Andrica, Mihai Piticari
$3 \quad$ Let G be a finite group of n elements $(n \geq 2)$ and p be the smallest prime factor of n. If G has only a subgroup H with p elements, then prove that H is in the center of G.

Note. The center of G is the set $Z(G)=\{a \in G \mid a x=x a, \forall x \in G\}$.
4 Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that

$$
\int_{0}^{1} f(x) d x=0 .
$$

Prove that there is $c \in(0,1)$ such that

$$
\int_{0}^{c} x f(x) d x=0
$$

Cezar Lupu, Tudorel Lupu

