Art of Problem Solving

AoPS Community

Romania National Olympiad 2009

www.artofproblemsolving.com/community/c4422
by CatalinBordea, alex2008

- \quad Grade level 7
- \quad Grade level 8
- \quad Grade level 9

1 On the sides $A B, A C$ of a triangle $A B C$, consider the points M, respectively, N such that $M \neq A \neq N$ and $\frac{M B}{M A} \neq \frac{N C}{N A}$. Show that the line $M N$ passes through a point not dependent on M and N.

2 Show that for any four positive real numbers a, b, c, d and four negative real numbers e, f, g, h, the terms $a e+b c, e f+c g, f d+g h, d a+h b$ are not all positive.

3 Let be a natural number n, a permutation σ of order n, and n nonnegative real numbers $a_{1}, a_{2}, \ldots, a_{n}$. Prove the following inequality.

$$
\left(a_{1}^{2}+a_{\sigma(1)}\right)\left(a_{2}^{2}+a_{\sigma(2)}\right) \cdots\left(a_{n}^{2}+a_{\sigma(n)}\right) \geq\left(a_{1}^{2}+a_{1}\right)\left(a_{2}^{2}+a_{2}\right) \cdots\left(a_{n}^{2}+a_{n}\right)
$$

4 Let be two natural numbers $m, n \geq 2$, two increasing finite sequences of real numbers $\left(a_{i}\right)_{1 \leq i \leq n},\left(b_{j}\right)_{1 \leq j \leq m}$ and the set

$$
\left\{a_{i}+b_{j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\} .
$$

Show that the set above has $n+m-1$ elements if and only if the two sequences above are arithmetic progressions and these have the same ratio.

- \quad Grade level 10

1 a) Show that two real numbers $x, y>1$ chosen so that $x^{y}=y^{x}$, are equal or there exists a positive real number $m \neq 1$ such that $x=m^{\frac{1}{m-1}}$ and $y=m^{\frac{m}{m-1}}$.
b) Solve in $(1, \infty)^{2}$ the equation: $x^{y}+x^{x^{y-1}}=y^{x}+y^{y^{x-1}}$.

2 Let be a real number $a \in[2+\sqrt{2}, 4]$. Find $\inf _{\substack{z \in \mathbb{C} \\|z| \leq 1}}\left|z^{2}-a z+a\right|$.
$3 \quad$ Find all functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ that verify the relation

$$
f\left(x^{3}+y^{3}\right)=x f\left(y^{2}\right)+y f\left(x^{2}\right)
$$

for all real numbers x, y.
4 We say that a natural number $n \geq 4$ is unusual if, for any $n \times n$ array of real numbers, the sum of the numbers from any 3×3 compact subarray is negative, and the sum of the numbers from any 4×4 compact subarray is positive.
Find all unusual numbers.

- \quad Grade level 11

1 Let $\left(t_{n}\right)_{n}$ a convergent sequence of real numbers, $t_{n} \in(0,1),(\forall) n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} t_{n} \in(0,1)$. Define the sequences $\left(x_{n}\right)_{n}$ and $\left(y_{n}\right)_{n}$ by

$$
x_{n+1}=t_{n} x_{n}+\left(1-t_{n}\right) y_{n}, y_{n+1}=\left(1-t_{n}\right) x_{n}+t_{n} y_{n},(\forall) n \in \mathbb{N}
$$

and x_{0}, y_{0} are given real numbers.
a) Prove that the sequences $\left(x_{n}\right)_{n}$ and $\left(y_{n}\right)_{n}$ are convergent and have the same limit.
b) Prove that if $\lim _{n \rightarrow \infty} t_{n} \in\{0,1\}$, then the question is false.

2 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ a continuous function such that for any $x \in \mathbb{R}$, the limit $\lim _{h \rightarrow 0}\left|\frac{f(x+h)-f(x)}{h}\right|$ exists and it is finite. Prove that in any real point, f is differentiable or it has finite one-side derivates, of the same modul, but different signs.

3 Let $A, B \in \mathcal{M}_{n}(\mathbb{C})$ such that $A B=B A$ and $\operatorname{det} B \neq 0$.
a) If $|\operatorname{det}(A+z B)|=1$ for any $z \in \mathbb{C}$ such that $|z|=1$, then $A^{n}=O_{n}$.
b) Is the question from a) still true if $A B \neq B A$?

4 Let $f, g, h: \mathbb{R} \rightarrow \mathbb{R}$ such that f is differentiable, g and h are monotonic, and $f^{\prime}=f+g+h$. Prove that the set of the points of discontinuity of g coincides with the respective set of h.

- Grade level 12

1 Find all functions $f \in \mathcal{C}^{1}[0,1]$ that satisfy $f(1)=-1 / 6$ and

$$
\int_{0}^{1}\left(f^{\prime}(x)\right)^{2} d x \leq 2 \int_{0}^{1} f(x) d x
$$

2 a) Show that the set of nilpotents of a finite, commutative ring, is closed under each of the operations of the ring.
b) Prove that the number of nilpotents of a finite, commutative ring, divides the number of divisors of zero of the ring.

3 Find the natural numbers $n \geq 2$ which have the property that the ring of integers modulo n has exactly an element that is not a sum of two squares.

4 Find all functions $f:[0,1] \longrightarrow[0,1]$ that are bijective, continuous and have the property that, for any continuous function $g:[0,1] \longrightarrow \mathbb{R}$, the following equality holds.

$$
\int_{0}^{1} g(f(x)) d x=\int_{0}^{1} g(x) d x
$$

