

AoPS Community

2011 Romania National Olympiad

Romania National Olympiad 2011

www.artofproblemsolving.com/community/c4424 by CatalinBordea, Mateescu Constantin

- Grade level 7
- Grade level 8
- Grade level 9
- **1** Let be a natural number n and n real numbers a_1, a_2, \ldots, a_n such that

$$a_m + a_{m+1} + \dots + a_n \ge \frac{(m+n)(n-m+1)}{2}, \quad \forall m \in \{1, 2, \dots, n\}.$$

Prove that $a_1^2 + a_2^2 + \dots + a_n^2 \ge \frac{n(n+1)(2n+1)}{6}$.

- **2** Prove that any natural number smaller or equal than the factorial of a natural number *n* is the sum of at most *n* distinct divisors of the factorial of *n*.
- **3** Let ABC be a triangle, I_a be center of the *A*-excircle. This excircle intersects the lines AB, AC, at *P*, respectively, *Q*. The line *PQ* intersects the lines I_aB , I_aC at *D*, respectively, *E*. Let A_1 be the intersection of *DC* with *BE*, and define, analogously, B_1 , C_1 . Show that AA_1 , BB_1 , CC_1 are concurrent.
- **4** Let be a natural number *n*. Prove that there exists a number $k \in \{0, 1, 2, ..., n\}$ such that the floor of $2^{n+k}\sqrt{2}$ is even.

- Grade level 10

1 Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ a function having the property that

$$|f(x+y) + \sin x + \sin y| \le 2,$$

for all real numbers x, y.

a) Prove that $|f(x)| \le 1 + \cos x$, for all real numbers x.

b) Give an example of what f may be, if the interval $(-\pi, \pi)$ is included in its support. (https://en.wikipedia.org/wiki/Support_(mathematics))

2 Find all numbers *n* for which there exist three (not necessarily distinct) roots of unity of order *n* whose sum is 1.

AoPS Community

2011 Romania National Olympiad

3 Let be three positive real numbers a, b, c. Show that the function $f : \mathbb{R} \longrightarrow \mathbb{R}$,

$$f(x) = \frac{a^x}{b^x + c^x} + \frac{b^x}{a^x + c^x} + \frac{c^x}{a^x + b^x},$$

is nondecreasing on the interval $[0,\infty)$ and nonincreasing on the interval $(-\infty,0]$.

a) Show that there exists exactly a sequence $(x_n, y_n)_{n \ge 0}$ of pairs of nonnegative integers, that 4 satisfy the property that $(1 + \sqrt{33})^n = x_n + y_n \sqrt{33}$, for all nonegative integers *n*.

b) Having in mind the sequence from a), prove that, for any natural prime p, at least one of the numbers y_{p-1}, y_p and y_{p+1} are divisible by p.

- Grade level 11 _
- A row of a matrix belonging to $\mathcal{M}_n(\mathbb{C})$ is said to be *permutable* if no matter how we would 1 permute the entries of that row, the value of the determinant doesn't change. Prove that if a matrix has two permutable rows, then its determinant is equal to 0.
- Let $u : [a, b] \to \mathbb{R}$ be a continuous function that has finite left-side derivative $u'_l(x)$ in any point 2 $x \in (a, b]$. Prove that the function u is monotonously increasing if and only if $u'_i(x) \ge 0$, for any $x \in (a, b]$.
- 3 Let $g: \mathbb{R} \to \mathbb{R}$ be a continuous and strictly decreasing function with $g(\mathbb{R}) = (-\infty, 0)$. Prove that there are no continuous functions $f:\mathbb{R}\to\mathbb{R}$ with the property that there exists a natural number $k \ge 2$ so that : $\underbrace{f \circ f \circ \ldots \circ f}_{k \text{ times}} = g$.

Let $A, B \in \mathcal{M}_2(\mathbb{C})$ so that : $A^2 + B^2 = 2AB$. 4 **a)** Prove that : AB = BA. **b)** Prove that : tr(A) = tr(B).

Grade level 12 _

- 1 Prove that a ring that has a prime characteristic admits nonzero nilpotent elements if and only if its characteristic divides the number of its units.
- Let be a continuous function $f:[0,1] \longrightarrow (0,\infty)$ having the property that, for any natural 2 number $n \ge 2$, there exist n-1 real numbers $0 < t_1 < t_2 < \cdots < t_{n-1} < 1$, such that

$$\int_0^{t_1} f(t)dt = \int_{t_1}^{t_2} f(t)dt = \int_{t_2}^{t_3} f(t)dt = \dots = \int_{t_{n-2}}^{t_{n-1}} f(t)dt = \int_{t_{n-1}}^1 f(t)dt.$$

Calculate $\lim_{n\to\infty} \frac{n}{\frac{1}{f(0)} + \sum_{i=1}^{n-1} \frac{1}{f(t_i)} + \frac{1}{f(1)}}$.

AoPS Community

2011 Romania National Olympiad

- **3** The equation $x^{n+1} + x = 0$ admits 0 and 1 as its unique solutions in a ring of order $n \ge 2$. Prove that this ring is a skew field.
- **4** Let $f, F : \mathbb{R} \longrightarrow \mathbb{R}$ be two functions such that f is nondecreasing, F admits finite lateral derivates in every point of its domain,

$$\lim_{x \to y^{-}} f(x) \le \lim_{x \to y^{-}} \frac{F(x) - F(y)}{x - y}, \lim_{x \to y^{+}} f(x) \ge \lim_{x \to y^{+}} \frac{F(x) - F(y)}{x - y},$$

for all real numbers y, and F(0) = 0.

Prove that $F(x) = \int_0^x f(t) dt$, for all real numbers x.

