AoPS Community

Romania National Olympiad 2011

www.artofproblemsolving.com/community/c4424
by CatalinBordea, Mateescu Constantin

- \quad Grade level 7
- \quad Grade level 8
- \quad Grade level 9

1 Let be a natural number n and n real numbers $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
a_{m}+a_{m+1}+\cdots+a_{n} \geq \frac{(m+n)(n-m+1)}{2}, \quad \forall m \in\{1,2, \ldots, n\} .
$$

Prove that $a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \geq \frac{n(n+1)(2 n+1)}{6}$.
2 Prove that any natural number smaller or equal than the factorial of a natural number n is the sum of at most n distinct divisors of the factorial of n.

3 Let $A B C$ be a triangle, I_{a} be center of the A-excircle. This excircle intersects the lines $A B, A C$, at P, respectively, Q. The line $P Q$ intersects the lines $I_{a} B, I_{a} C$ at D, respectively, E. Let A_{1} be the intersection of $D C$ with $B E$, and define, analogously, B_{1}, C_{1}. Show that $A A_{1}, B B_{1}, C C_{1}$ are concurrent.

4 Let be a natural number n. Prove that there exists a number $k \in\{0,1,2, \ldots n\}$ such that the floor of $2^{n+k} \sqrt{2}$ is even.

- \quad Grade level 10

1 Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ a function having the property that

$$
|f(x+y)+\sin x+\sin y| \leq 2,
$$

for all real numbers x, y.
a) Prove that $|f(x)| \leq 1+\cos x$, for all real numbers x.
b) Give an example of what f may be, if the interval $(-\pi, \pi)$ is included in its support. (https: //en.wikipedia.org/wiki/Support_(mathematics))

2 Find all numbers n for which there exist three (not necessarily distinct) roots of unity of order n whose sum is 1 .

AoPS Community

2011 Romania National Olympiad

3 Let be three positive real numbers a, b, c. Show that the function $f: \mathbb{R} \longrightarrow \mathbb{R}$,

$$
f(x)=\frac{a^{x}}{b^{x}+c^{x}}+\frac{b^{x}}{a^{x}+c^{x}}+\frac{c^{x}}{a^{x}+b^{x}},
$$

is nondecresing on the interval $[0, \infty)$ and nonincreasing on the interval $(-\infty, 0]$.
4 a) Show that there exists exactly a sequence $\left(x_{n}, y_{n}\right)_{n \geq 0}$ of pairs of nonnegative integers, that satisfy the property that $(1+\sqrt{3} 3)^{n}=x_{n}+y_{n} \sqrt{3} 3$, for all nonegative integers n.
b) Having in mind the sequence from a), prove that, for any natural prime p, at least one of the numbers y_{p-1}, y_{p} and y_{p+1} are divisible by p.

- \quad Grade level 11

1 A row of a matrix belonging to $\mathcal{M}_{n}(\mathbb{C})$ is said to be permutable if no matter how we would permute the entries of that row, the value of the determinant doesn't change. Prove that if a matrix has two permutable rows, then its determinant is equal to 0 .

2 Let $u:[a, b] \rightarrow \mathbb{R}$ be a continuous function that has finite left-side derivative $u_{l}^{\prime}(x)$ in any point $x \in(a, b]$. Prove that the function u is monotonously increasing if and only if $u_{l}^{\prime}(x) \geq 0$, for any $x \in(a, b]$.

3 Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous and strictly decreasing function with $g(\mathbb{R})=(-\infty, 0)$. Prove that there are no continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with the property that there exists a natural number $k \geq 2$ so that $: \underbrace{f \circ f \circ \ldots \circ f}_{k \text { times }}=g$.

4 Let $A, B \in \mathcal{M}_{2}(\mathbb{C})$ so that: $A^{2}+B^{2}=2 A B$.
a) Prove that: $A B=B A$.
b) Prove that : $\operatorname{tr}(A)=\operatorname{tr}(B)$.

- \quad Grade level 12

1 Prove that a ring that has a prime characteristic admits nonzero nilpotent elements if and only if its characteristic divides the number of its units.

2 Let be a continuous function $f:[0,1] \longrightarrow(0, \infty)$ having the property that, for any natural number $n \geq 2$, there exist $n-1$ real numbers $0<t_{1}<t_{2}<\cdots<t_{n-1}<1$, such that

$$
\int_{0}^{t_{1}} f(t) d t=\int_{t_{1}}^{t_{2}} f(t) d t=\int_{t_{2}}^{t_{3}} f(t) d t=\cdots=\int_{t_{n-2}}^{t_{n-1}} f(t) d t=\int_{t_{n-1}}^{1} f(t) d t
$$

Calculate $\lim _{n \rightarrow \infty} \frac{n}{\frac{1}{f(0)}+\sum_{i=1}^{n-1} \frac{1}{f\left(t_{i}\right)}+\frac{1}{f(1)}}$.

3 The equation $x^{n+1}+x=0$ admits 0 and 1 as its unique solutions in a ring of order $n \geq 2$. Prove that this ring is a skew field.

4 Let $f, F: \mathbb{R} \longrightarrow \mathbb{R}$ be two functions such that f is nondecreasing, F admits finite lateral derivates in every point of its domain,

$$
\lim _{x \rightarrow y^{-}} f(x) \leq \lim _{x \rightarrow y^{-}} \frac{F(x)-F(y)}{x-y}, \lim _{x \rightarrow y^{+}} f(x) \geq \lim _{x \rightarrow y^{+}} \frac{F(x)-F(y)}{x-y}
$$

for all real numbers y, and $F(0)=0$.
Prove that $F(x)=\int_{0}^{x} f(t) d t$, for all real numbers x.

