AoPS Community

Romania National Olympiad 2012

www.artofproblemsolving.com/community/c4425
by Mateescu Constantin

- IX

1 The altitude $[B H]$ dropped onto the hypotenuse of a triangle $A B C$ intersects the bisectors $[A D]$ and $[C E]$ at Q and P respectively. Prove that the line passing through the midpoints of the segments $[Q D]$ and $[P E]$ is parallel to the line $A C$.

2 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with the following property. for any open bounded interval I, the set $f(I)$ is an open interval having the same length with I.

3 Prove that if $n \geq 2$ is a natural number and $x_{1}, x_{2}, \ldots, x_{n}$ are positive real numbers, then:

$$
4\left(\frac{x_{1}^{3}-x_{2}^{3}}{x_{1}+x_{2}}+\frac{x_{2}^{3}-x_{3}^{3}}{x_{2}+x_{3}}+\ldots+\frac{x_{n-1}^{3}-x_{n}^{3}}{x_{n-1}+x_{n}}+\frac{x_{n}^{3}-x_{1}^{3}}{x_{n}+x_{1}}\right) \leq \leq\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}+\ldots+\left(x_{n-1}-x_{n}\right)^{2}+\left(x_{n}-x_{1}\right.
$$

4 On a table there are $k \geq 2$ piles having $n_{1}, n_{2}, \ldots, n_{k}$ pencils respectively. A move consists in choosing two piles having a and b pencils respectively, $a \geq b$ and transferring b pencils from the first pile to the second one. Find the necessary and sufficient condition for $n_{1}, n_{2}, \ldots, n_{k}$, such that there exists a succession of moves through which all pencils are transferred to the same pile.

- X

1 Let $M=\{x \in \mathbb{C}| | z \mid=1, \operatorname{Re} z \in \mathbb{Q}\}$. Prove that there exist infinitely many equilateral triangles in the complex plane having all affixes of their vertices in the set M.

2 Let a, b and c be three complex numbers such that $a+b+c=0$ and $|a|=|b|=|c|=1$. Prove that:

$$
3 \leq|z-a|+|z-b|+|z-c| \leq 4,
$$

for any $z \in \mathbb{C},|z| \leq 1$.
3 Let $a, b \in \mathbb{R}$ with $0<a<b$. Prove that:
a) $2 \sqrt{a b} \leq \frac{x+y+z}{3}+\frac{a b}{\sqrt[3]{x y z}} \leq a+b$, for $x, y, z \in[a, b]$.
b) $\left\{\left.\frac{x+y+z}{3}+\frac{a b}{\sqrt[3]{x y z}} \right\rvert\, x, y, z \in[a, b]\right\}=[2 \sqrt{a b}, a+b]$.
$4 \quad$ Let n and m be two natural numbers, $m \geq n \geq 2$. Find the number of injective functions

$$
f:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, m\}
$$

such that there exists a unique number $i \in\{1,2, \ldots, n-1\}$ for which $f(i)>f(i+1)$.

- XI

1 Let $f, g:[0,1] \rightarrow[0,1]$ be two functions such that g is monotonic, surjective and $|f(x)-f(y)| \leq$ $|g(x)-g(y)|$, for any $x, y \in[0,1]$.
a) Prove that f is continuous and that there exists some $x_{0} \in[0,1]$ with $f\left(x_{0}\right)=g\left(x_{0}\right)$.
b) Prove that the set $\{x \in[0,1] \mid f(x)=g(x)\}$ is a closed interval.

2 Let n and k be two natural numbers such that $n \geq 2$ and $1 \leq k \leq n-1$. Prove that if the matrix $A \in \mathcal{M}_{n}(\mathbb{C})$ has exactly k minors of order $n-1$ equal to 0 , then $\operatorname{det}(A) \neq 0$.

3 Let $A, B \in \mathcal{M}_{4}(\mathbb{R})$ such that $A B=B A$ and $\operatorname{det}\left(A^{2}+A B+B^{2}\right)=0$. Prove that:

$$
\operatorname{det}(A+B)+3 \operatorname{det}(A-B)=6 \operatorname{det}(A)+6 \operatorname{det}(B)
$$

4 Find all differentiable functions $f:[0, \infty) \rightarrow[0, \infty)$ for which $f(0)=0$ and $f^{\prime}\left(x^{2}\right)=f(x)$ for any $x \in[0, \infty)$.

- XII

1 Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a continuous function such that $\int_{0}^{n} f(x) f(n-x) \mathrm{d} x=\int_{0}^{n} f^{2}(x) \mathrm{d} x$, for any natural number $n \geq 1$. Prove that f is a periodic function.

2 Let $(R,+, \cdot)$ be a ring and let f be a surjective endomorphism of R such that $[x, f(x)]=0$ for any $x \in R$, where $[a, b]=a b-b a, a, b \in R$. Prove that:
a) $[x, f(y)]=[f(x), y]$ and $x[x, y]=f(x)[x, y]$, for any $x, y \in R$;
b) If R is a division ring and f is different from the identity function, then R is commutative.
$3 \quad$ Let \mathcal{C} be the set of integrable functions $f:[0,1] \rightarrow \mathbb{R}$ such that $0 \leq f(x) \leq x$ for any $x \in[0,1]$. Define the function $V: \mathcal{C} \rightarrow \mathbb{R}$ by

$$
V(f)=\int_{0}^{1} f^{2}(x) \mathrm{d} x-\left(\int_{0}^{1} f(x) \mathrm{d} x\right)^{2}, f \in \mathcal{C}
$$

Determine the following two sets:
a) $\left\{V\left(f_{a}\right) \mid 0 \leq a \leq 1\right\}$, where $f_{a}(x)=0$, if $0 \leq x \leq a$ and $f_{a}(x)=x$, if $a<x \leq 1$; b) $\{V(f) \mid f \in \mathcal{C}\}$.

4 Let m and n be two nonzero natural numbers. Determine the minimum number of distinct complex roots of the polynomial $\prod_{k=1}^{m}(f+k)$, when f covers the set of $n^{\text {th }}$ - degree polynomials with complex coefficients.

