

AoPS Community

2013 Romania National Olympiad

Romania National Olympiad 2013

www.artofproblemsolving.com/community/c4426 by ionbursuc

- IX
- 1 A series of numbers is called complete if it has non-zero natural terms and any nonzero integer has at least one among multiple series. Show that the arithmetic progression is a complete sequence if and only if it divides the first term relationship.
- **2** Given $f : \mathbb{R} \to \mathbb{R}$ an arbitrary function and $g : \mathbb{R} \to \mathbb{R}$ a function of the second degree, with the property: for any real numbers m and n equation f(x) = mx + n has solutions if and only if the equation g(x) = mx + n has solutions Show that the functions f and g are equal.
- Given P a point m inside a triangle acute-angled ABC and DEF intersections of lines with that AP, BP, CP with[BC], [CA], respective [AB]
 a) Show that the area of the triangle DEF is at most a quarter of the area of the triangle ABC
 b) Show that the radius of the circle inscribed in the triangle DEF is at most a quarter of the radius of the circle circumscribed on triangle 4ABC.
- **4** Consider a nonzero integer number *n* and the function $f : \mathbb{N} \to \mathbb{N}$ by

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even} \\ \frac{x-1}{2} + 2^{n-1} & \text{if } x \text{ is odd} \end{cases}.$$

Determine the set:

$$A = \{ x \in \mathbb{N} \mid \underbrace{(f \circ f \circ \ldots \circ f)}_{n \ f' \mathbf{S}} (x) = x \}.$$

– X

1 Solve the following equation $2^{\sin^4 x - \cos^2 x} - 2^{\cos^4 x - \sin^2 x} = \cos 2x$

2 To be considered the following complex and distinct *a*, *b*, *c*, *d*. Prove that the following affirmations are equivalent:
i)For every *z* ∈ C the inequality takes place :|*z* − *a*| + |*z* − *b*| ≥ |*z* − *c*| + |*z* − *d*|;
ii)There is *t* ∈ (0, 1) so that *c* = *ta* + (1 − *t*) *b* si *d* = (1 − *t*) *a* + *tb*

AoPS Community

2013 Romania National Olympiad

3	Find all injective functions $f:\mathbb{Z} o\mathbb{Z}$ that satisfy: $ f(x) - f(y) \le x - y $,for any $x,y\in\mathbb{Z}$.
4	a)Prove that $\frac{1}{2} + \frac{1}{3} + + \frac{1}{2^m} < m$, for any $m \in \mathbb{N}^*$. b)Let $p_1, p_2,, p_n$ be the prime numbers less than 2^{100} . Prove that $\frac{1}{p_1} + \frac{1}{p_2} + + \frac{1}{p_n} < 10$
-	XI
1	Given A, non-inverted matrices of order n with real elements, $n \ge 2$ and given A^* adjoin matrix A. Prove that $tr(A^*) \ne -1$ if and only if the matrix $I_n + A^*$ is invertible.
2	Whether m and n natural numbers, $m, n \ge 2$. Consider matrices, $A_1, A_2,, A_m \in M_n(R)$ not all nilpotent. Demonstrate that there is an integer number $k > 0$ such that $A^k_1 + A^k_2 + + A^k_m \ne O_n$
3	A function
	$f:(0,\infty) \ o (0,\infty)$
	is called contract if, for every numbers $x, y \in (0,\infty)$ we have, $\lim_{n \to \infty} (f^n(x) - f^n(y)) = 0$ where
	$f^n = \underbrace{f \circ f \circ \dots \circ f}_{n \ f' \mathbf{s}}$
	a) Consider
	$f:(0,\infty) \to (0,\infty)$
	a function contract, continue with the property that has a fixed point, that existing $x_0 \in (0,\infty)$ there so that $f(x_0) = x_0$. Show that $f(x) > x$, for every $x \in (0,x_0)$ and $f(x) < x$, for every $x \in (x_0,\infty)$. b) Show that the given function
	$f{:}(\mathbf{0,\infty}) ightarrow (\mathbf{0,\infty})$
	given by $f(x) = x + \frac{1}{x}$ is contracted but has no fix number.
4	a) Consider
	$f{:}\left[{f 0,\infty } ight) ightarrow \left[{f 0,\infty } ight)$
	a differentiable and convex function . Show that $f(x) \le x$, for every $x \ge 0$, than $f'(x) \le 1$, for every $x \ge 0$ b) Determine
	$f: [0, \infty) \to [0, \infty)$
	differentiable and convex functions which have the property that $f(0) = 0$, and $f'(x) f(f(x)) = x$, for every $x \ge 0$
_	XII

AoPS Community

2013 Romania National Olympiad

- 1 Determine continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that $(a^2 + ab + b^2) \int_a^b f(x) dx = 3 \int_a^b x^2 f(x) dx$, for every $a, b \in \mathbb{R}$.

4 Given $n \ge 2$ a natural number, $(K, +, \cdot)$ a body with commutative property that $\underbrace{1 + \ldots +}_{m} 1 \ne 0, m = 2, \ldots, n, f \in K[X]$ a polynomial of degree n and G a subgroup of the additive group $(K, +, \cdot), G \ne K$. Show that there is $a \in K$ so $f(a) \notin G$.

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.