AoPS Community

Romania National Olympiad 2013

www.artofproblemsolving.com/community/c4426
by ionbursuc

- IX

1 A series of numbers is called complete if it has non-zero natural terms and any nonzero integer has at least one among multiple series. Show that the arithmetic progression is a complete sequence if and only if it divides the first term relationship.

2 Given $f: \mathbb{R} \rightarrow \mathbb{R}$ an arbitrary function and $g: \mathbb{R} \rightarrow \mathbb{R}$ a function of the second degree, with the property:
for any real numbers m and n equation $f(x)=m x+n$ has solutions if and only if the equation $g(x)=m x+n$ has solutions
Show that the functions f and g are equal.
3 Given P a point m inside a triangle acute-angled $A B C$ and $D E F$ intersections of lines with that $A P, B P, C P$ with $[B C],[C A]$, respective $[A B]$
a) Show that the area of the triangle $D E F$ is at most a quarter of the area of the triangle $A B C$
b) Show that the radius of the circle inscribed in the triangle $D E F$ is at most a quarter of the radius of the circle circumscribed on triangle $4 A B C$.
$4 \quad$ Consider a nonzero integer number n and the function $f: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
f(x)=\left\{\begin{array}{ll}
\frac{x}{2} & \text { if } x \text { is even } \\
\frac{x-1}{2}+2^{n-1} & \text { if } x \text { is odd }
\end{array} .\right.
$$

Determine the set:

$$
A=\{x \in \mathbb{N} \mid \underbrace{(f \circ f \circ \ldots \circ f)}_{n f^{\prime} s}(x)=x\} .
$$

- $\quad \mathrm{X}$

1 Solve the following equation $2^{\sin ^{4} x-\cos ^{2} x}-2^{\cos ^{4} x-\sin ^{2} x}=\cos 2 x$
2 To be considered the following complex and distinct a, b, c, d. Prove that the following affirmations are equivalent:
i)For every $z \in \mathbb{C}$ the inequality takes place : $|z-a|+|z-b| \geq|z-c|+|z-d|$;
ii)There is $t \in(0,1)$ so that $c=t a+(1-t) b$ si $d=(1-t) a+t b$
$3 \quad$ Find all injective functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ that satisfy: $|f(x)-f(y)| \leq|x-y|$, for any $x, y \in \mathbb{Z}$.
$4 \quad$ a) Prove that $\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{2^{m}}<m$, for any $m \in \mathbb{N}^{*}$.
b)Let $p_{1}, p_{2}, \ldots, p_{n}$ be the prime numbers less than 2^{100}. Prove that $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\ldots+\frac{1}{p_{n}}<10$

- XI

1 Given A, non-inverted matrices of order n with real elements, $n \geq 2$ and given A^{*} adjoin matrix A. Prove that $\operatorname{tr}\left(A^{*}\right) \neq-1$ if and only if the matrix $I_{n}+A^{*}$ is invertible.

2 Whether m and n natural numbers, $m, n \geq 2$. Consider matrices, $A_{1}, A_{2}, \ldots, A_{m} \in M_{n}(R)$ not all nilpotent. Demonstrate that there is an integer number $k>0$ such that $A^{k}{ }_{1}+A^{k}{ }_{2}+\ldots . .+A^{k}{ }_{m} \neq$ O_{n}

3 A function

$$
f:(0, \infty) \rightarrow(0, \infty)
$$

is called contract if, for every numbers $x, y \in(0, \infty)$ we have, $\lim _{n \rightarrow \infty}\left(f^{n}(x)-f^{n}(y)\right)=0$ where $f^{n}=\underbrace{f \circ f \circ \ldots \circ f}_{n f^{\prime} s}$
a) Consider

$$
f:(0, \infty) \rightarrow(0, \infty)
$$

a function contract, continue with the property that has a fixed point, that existing $x_{0} \in(0, \infty)$ there so that $f\left(x_{0}\right)=x_{0}$. Show that $f(x)>x$, for every $x \in\left(0, x_{0}\right)$ and $f(x)<x$, for every $x \in\left(x_{0}, \infty\right)$.
b) Show that the given function

$$
f:(0, \infty) \rightarrow(0, \infty)
$$

given by $f(x)=x+\frac{1}{x}$ is contracted but has no fix number.
4 a) Consider

$$
f:[0, \infty) \rightarrow[0, \infty)
$$

a differentiable and convex function. Show that $f(x) \leq x$, for every $x \geq 0$, than $f^{\prime}(x) \leq 1$, for every $x \geq 0$
b) Determine

$$
f:[0, \infty) \rightarrow[0, \infty)
$$

differentiable and convex functions which have the property that $f(0)=0$, and $f^{\prime}(x) f(f(x))=$ x, for every $x \geq 0$

[^0]1 Determine continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\left(a^{2}+a b+b^{2}\right) \int_{a}^{b} f(x) d x=3 \int_{a}^{b} x^{2} f(x) d x$, for every $a, b \in \mathbb{R}$.

2 Given a ring $(A,+, \cdot)$ that meets both of the following conditions:
(1) A is not a field, and
(2) For every non-invertible element x of A, there is an integer $m>1$ (depending on x) such that $x=x^{2}+x^{3}+\ldots+x^{2^{m}}$.
Show that
(a) $x+x=0$ for every $x \in A$, and
(b) $x^{2}=x$ for every non-invertible $x \in A$.

3 Given $a \in(0,1)$ and C the set of increasing functions
$f:[0,1] \rightarrow[0, \infty)$ such that $\int_{0}^{1} f(x) d x=1$. Determine: $(a) \max _{f \in C} \int_{0}^{a} f(x) d x(b) \max _{f \in C} \int_{0}^{a} f^{2}(x) d x$
4 Given $n \geq 2$ a natural number, $(K,+, \cdot)$ a body with commutative property that $\underbrace{1+\ldots+1}_{m} 1 \neq$ $0, m=2, \ldots, n, f \in K[X]$ a polynomial of degree n and G a subgroup of the additive group $(K,+, \cdot), G \neq K$. Show that there is $a \in K \operatorname{sof}(a) \notin G$.

[^0]: - XII

