Art of Problem Solving

AoPS Community

Manhattan Mathematical Olympiad 2001

www.artofproblemsolving.com/community/c4428
by AkshajK

- \quad Grades 5-6

1 Piglet added together three consecutive whole numbers, then the next three numbers, and multiplied one sum by the other. Could the product be equal to $111,111,111$?

2 The dates of three Sundays of a month were even numbers. What day of the week was the 20th of the month?

3 Is it possible to divide 5 apples of the same size equally between six children so that no apple will be cut into more than 3 pieces? (You are allowed to cut an apple into any number of equal pieces).

4 You have a four-liter jug and a six-liter pot (both of cylindrical shape), and a big barrel of water. Can you measure exactly one liter of water?

- \quad Grades 7-8

1 The product of a million whole numbers is equal to million. What can be the greatest possible value of the sum of these numbers?

2 There are 2001 marked points in the plane. It is known that the area of any triangle with vertices at the given points is less than or equal than $1 \mathrm{~cm}^{2}$. Prove that there exists a triangle with area no more than $4 \mathrm{~cm}^{2}$, which contains all 2001 points.

3 Integer numbers x, y, z satisfy the equation

$$
x^{3}+y^{3}=z^{3} .
$$

Prove that at least one of them is divisible by 3 .
4 You have a pencil, paper and an angle of 19 degrees made out of two equal very thin sticks. Can you construct an angle of 1 degree using only these tools?

- \quad Grades 9-12

1 Find all integer solutions to the equation

$$
x^{2}+y^{2}+z^{2}=2 x y z
$$

2 Prove that circles which have sides of a convex quadrilateral as diameters cover its interior. (Convex polygon is the one which contains with any two points the whole segment, joining them).

3 Let x_{1} and x_{2} be roots of the equation $x^{2}-6 x+1=0$. Prove that for any integer $n \geq 1$ the number $x_{1}^{n}+x_{2}^{n}$ is integer and is not divisible by 5 .

4 How many digits has the number 2^{100} ?
$5 \quad$ Factorize the expression $a^{3}+b^{3}+c^{3}-3 a b c$.
6 There are n coins of the radius r on a table which is a circle of the radius R. It is known that:
a) any two coins either touch each other or have no common points;
b) there is no place for one more coin on the table.

Prove that

$$
\frac{1}{2}\left(\frac{R}{r}-1\right)<\sqrt{n}<\frac{R}{r}
$$

