Art of Problem Solving

AoPS Community

Manhattan Mathematical Olympiad 2002

www.artofproblemsolving.com/community/c4429
by AkshajK

- \quad Grades 5-6

1 You are given a rectangular sheet of paper and scissors. Can you cut it into a number of pieces all having the same size and shape of a polygon with five sides? What about polygon with seven sides?

2 One out of every seven mathematicians is a philosopher, and one out of every nine philosophers is a mathematician. Are there more philosophers or mathematicians?

3 Let us consider all rectangles with sides of length a, b both of which are whole numbers. Do more of these rectangles have perimeter 2000 or perimeter 2002?

4 Somebody placed digits $1,2,3, \ldots, 9$ around the circumference of a circle in an arbitrary order. Reading clockwise three consecutive digits you get a 3 -digit whole number. There are nine such 3-digit numbers altogether. Find their sum.

- \quad Grades 7-8

1 Prove that if an integer n is of the form $4 m+3$, where m is another integer, then n is not a sum of two perfect squares (a perfect square is an integer which is the square of some integer).

2 Let us consider the sequence $1,2,3, \ldots, 2002$. Somebody choses 1002 numbers from the sequence. Prove that there are two of the chosen numbers which are relatively prime (i.e. do not have any common divisors except 1).

3 The product $1 \cdot 2 \cdot \ldots \cdot n$ is denoted by n ! and called n-factorial. Prove that the product

$$
1!2!3!\ldots 49!51!\ldots \text {. . . } 100!
$$

(the factor 50 ! is missing) is the square of an integer number.

4 Find six points $A_{1}, A_{2}, \ldots, A_{6}$ in the plane, such that for each point $A_{i}, i=1,2, \ldots, 6$ there are exactly three of the remaining five points exactly 1 cm from A_{i}.

[^0]1 Famous French mathematician Pierre Fermat believed that all numbers of the form $F_{n}=2^{2^{n}}+$ 1 are prime for all non-negative integers n. Indeed, one can check that $F_{0}=3, F_{1}=5, F_{2}=17$, $F_{3}=257$ are all prime.
a) Prove that F_{5} is divisible by 641 . (Hence Fermat was wrong.)
b) Prove that if $k \neq n$ then F_{k} and F_{n} are relatively prime (i.e. they do not have any common divisor except 1)
(Notice: using b) one can prove that there are infinitely many prime numbers)
2 Prove that for any sequence $a_{1}, a_{2}, \ldots, a_{2002}$ of non-negative integers written in the usual decimal notation with $a_{1}>0$ there exists an integer n such that n^{2} starts with digits $a_{1}, a_{2}, \ldots, a_{2002}$ (in this order).

3 Prove that for any polygon with all equal angles and for any interior point A, the sum of distances from A to the sides of the polygon does not depend on the position of A.

4 A triangle has sides with lengths a, b, c such that

$$
a^{2}+b^{2}=5 c^{2}
$$

Prove that medians to the sides of lengths a and b are perpendicular.

[^0]: - \quad Grades 9-12

