AoPS Community

Nordic 2005

www.artofproblemsolving.com/community/c4433
by arccosinus

1 Find all positive integers k such that the product of the digits of k, in decimal notation, equals

$$
\frac{25}{8} k-211
$$

2 Let a, b, c be positive real numbers. Prove that

$$
\frac{2 a^{2}}{b+c}+\frac{2 b^{2}}{c+a}+\frac{2 c^{2}}{a+b} \geq a+b+c
$$

(this is, of course, a joke!)

EDITED with exponent 2 over c

3 There are 2005 young people sitting around a large circular table. Of these, at most 668 are boys. We say that a girl G has a strong position, if, counting from G in either direction, the number of girls is always strictly larger than the number of boys (G is herself included in the count). Prove that there is always a girl in a strong position.

4 The circle ζ_{1} is inside the circle ζ_{2}, and the circles touch each other at A. A line through A intersects ζ_{1} also at B, and ζ_{2} also at C. The tangent to ζ_{1} at B intersects ζ_{2} at D and E. The tangents of ζ_{1} passing thorugh C touch ζ_{2} at F and G. Prove that D, E, F and G are concyclic.

