

## **AoPS Community**

## Nordic 2005

www.artofproblemsolving.com/community/c4433 by arccosinus

**1** Find all positive integers k such that the product of the digits of k, in decimal notation, equals

$$\frac{25}{8}k-211$$

**2** Let *a*, *b*, *c* be positive real numbers. Prove that

$$\frac{2a^2}{b+c} + \frac{2b^2}{c+a} + \frac{2c^2}{a+b} \ge a+b+c$$

(this is, of course, a joke!)

## EDITED with exponent 2 over c

- **3** There are 2005 young people sitting around a large circular table. Of these, at most 668 are boys. We say that a girl *G* has a strong position, if, counting from *G* in either direction, the number of girls is always strictly larger than the number of boys (*G* is herself included in the count). Prove that there is always a girl in a strong position.
- **4** The circle  $\zeta_1$  is inside the circle  $\zeta_2$ , and the circles touch each other at *A*. A line through *A* intersects  $\zeta_1$  also at *B*, and  $\zeta_2$  also at *C*. The tangent to  $\zeta_1$  at *B* intersects  $\zeta_2$  at *D* and *E*. The tangents of  $\zeta_1$  passing thorugh *C* touch  $\zeta_2$  at *F* and *G*. Prove that *D*, *E*, *F* and *G* are concyclic.

Act of Problem Solving is an ACS WASC Accredited School.