AoPS Community

Nordic 2006

www.artofproblemsolving.com/community/c4434
by ACCCGS8

1 Points B, C vary on two fixed rays emanating from point A such that $A B+A C$ is constant. Show that there is a point D, other than A, such that the circumcircle of triangle $A B C$ passes through D for all possible choices of B, C.

2 Real numbers x, y, z are not all equal and satisfy $x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}=k$. Find all possible values of k.

3 A sequence $\left(a_{n}\right)$ of positive integers is defined by $a_{0}=m$ and $a_{n+1}=a_{n}^{5}+487$ for all $n \geq 0$. Find all positive integers m such that the sequence contains the maximum possible number of perfect squares.

4 Each square of a 100×100 board is painted with one of 100 different colours, so that each colour is used exactly 100 times. Show that there exists a row or column of the chessboard in which at least 10 colours are used.

