AoPS Community

Nordic 2008

www.artofproblemsolving.com/community/c4436
by ACCCGS8

1 Find all reals A, B, C such that there exists a real function f satisfying $f(x+f(y))=A x+$ $B y+C$ for all reals x, y.

2 Assume that $n \geq 3$ people with different names sit around a round table. We call any unordered pair of them, say M, N, dominating if

1) they do not sit in adjacent seats
2) on one or both arcs connecting M, N along the table, all people have names coming alphabetically after M, N.

Determine the minimal number of dominating pairs.
3 Let $A B C$ be a triangle and D, E be points on $B C, C A$ such that $A D, B E$ are angle bisectors of $\triangle A B C$. Let F, G be points on the circumcircle of $\triangle A B C$ such that $A F \| D E$ and $F G \| B C$. Prove that $\frac{A G}{B G}=\frac{A B+A C}{A B+B C}$.

4 The difference between the cubes of two consecutive positive integers is equal to n^{2} for a positive integer n. Show that n is the sum of two squares.

