AoPS Community

Nordic 2012

www.artofproblemsolving.com/community/c4440
by djb86

1 The real numbers a, b, c are such that $a^{2}+b^{2}=2 c^{2}$, and also such that $a \neq b, c \neq-a, c \neq-b$. Show that

$$
\frac{(a+b+2 c)\left(2 a^{2}-b^{2}-c^{2}\right)}{(a-b)(a+c)(b+c)}
$$

is an integer.
2 Given a triangle $A B C$, let P lie on the circumcircle of the triangle and be the midpoint of the arc $B C$ which does not contain A. Draw a straight line l through P so that l is parallel to $A B$. Denote by k the circle which passes through B, and is tangent to l at the point P. Let Q be the second point of intersection of k and the line $A B$ (if there is no second point of intersection, choose $Q=B$). Prove that $A Q=A C$.

3 Find the smallest positive integer n, such that there exist n integers $x_{1}, x_{2}, \ldots, x_{n}$ (not necessarily different), with $1 \leq x_{k} \leq n, 1 \leq k \leq n$, and such that

$$
x_{1}+x_{2}+\cdots+x_{n}=\frac{n(n+1)}{2}, \quad \text { and } x_{1} x_{2} \cdots x_{n}=n!,
$$

but $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \neq\{1,2, \ldots, n\}$.
4 The number 1 is written on the blackboard. After that a sequence of numbers is created as follows: at each step each number a on the blackboard is replaced by the numbers $a-1$ and $a+1$; if the number 0 occurs, it is erased immediately; if a number occurs more than once, all its occurrences are left on the blackboard. Thus the blackboard will show 1 after 0 steps; 2 after 1 step; 1,3 after 2 steps; 2, 2, 4 after 3 steps, and so on. How many numbers will there be on the blackboard after n steps?

