

W. Rudin, Principles of Mathematical Analysis, 3rd Edition

www.artofproblemsolving.com/community/c444062 by Solumilkyu

1. Let *f* be defined for all real *x*, and suppose that

$$|f(x) - f(y)| \le (x - y)^2$$

for all x and y. Prove that f is constant.

Starting at f(0), we show that f(x) = f(0) for all $x \in R^1$. Consider the case x > 0, and for n = 1, 2..., let $\{x_0, x_1, x_2, ..., x_n\}$ be a *partition* of the interval [0, x] with $x_0 = 0$, $x_n = x$, and $x_{j+1} - x_j = \frac{x}{n}$ for $j \in \{0, 1, 2, ..., n-1\}$. Then

$$|f(x) - f(0)| = \left| \sum_{j=0}^{n-1} f(x_{j+1}) - f(x_j) \right|$$

$$\leq \sum_{j=0}^{n-1} |f(x_{j+1}) - f(x_j)|$$

$$\leq \sum_{j=0}^{n-1} (x_{j+1} - x_j)^2$$

$$= \sum_{j=0}^{n-1} \left(\frac{x}{n}\right)^2$$

$$= \frac{x^2}{n}$$

where the third line of the above inequality follows by assumption. Since $\frac{x^2}{n} \to 0$ as $n \to \infty$, we conclude that |f(x) - f(0)| = 0 or f(x) = f(0). The other case x < 0 is in a similar way. Hence f is constant.

2. Suppose f'(x) > 0 in (a, b). Prove that f is strictly increasing in (a, b), and let g be its inverse function. Prove that g is differentiable, and that

$$g'(f(x)) = \frac{1}{f'(x)}$$
 $(a < x < b)$

(i) By the mean value theorem (Theorem 5.10), for $x, y \in (a, b)$ with x < y,

$$f(y) - f(x) = f'(c)(y - x) > 0$$

Chapter 5 Selected Exercises (Rudin)

for some $c \in (x, y)$. So f is strictly increasing in (a, b). (ii) Let $g : f(a, b) \to (a, b)$ be the inverse function of f, i.e., g(f(x)) = x for all $x \in (a, b)$. We now show that

$$g'(y) = \lim_{z \to y} \frac{g(z) - g(y)}{z - y}$$

exists for all $y \in f(a, b)$. Put y = f(x) and z = f(t), where $x, t \in (a, b)$, then since f is continuous (by Theorem 5.2), so is g (by Theorem 4.17), and $z \to y$ implies $t \to x$. It follows that

$$\lim_{z \to y} \frac{g(z) - g(y)}{z - y} = \lim_{t \to x} \frac{g(f(t)) - g(f(x))}{f(t) - f(x)}$$
$$= \lim_{t \to x} \frac{t - x}{f(t) - f(x)}$$
$$= \lim_{t \to x} \frac{1}{\frac{f(t) - f(x)}{t - x}}$$
$$= \frac{1}{\lim_{t \to x} \frac{f(t) - f(x)}{t - x}}$$
$$= \frac{1}{f'(x)}$$

Since f' > 0, we see that g'(y) is defined for all $y \in f(a, b)$. Hence g is differentiable. It is also clear that $g'(f(x)) = \frac{1}{f'(x)}$ for all $x \in (a, b)$.

3. Suppose g is a real function on R^1 , with bounded derivative (say $|g'| \le M$). Fix $\varepsilon > 0$, and define $f(x) = x + \varepsilon g(x)$. Prove that f is one-to-one if ε is small enough. (A set of admissible value of ε can be determined which depends only on M.)

If $0 < \varepsilon < \frac{1}{M}$, then $g' \ge -M$ implies

$$f'(x) = 1 + \varepsilon g'(x) \ge 1 - \varepsilon M > 0$$

Thus by Exercise 2, f is strictly increasing, and hence f is one-to-one.

4. If

$$C_0 + \frac{C_1}{2} + \dots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0$$

where C_0, \ldots, C_n are real constants, prove that the equation

$$C_0 + C_1 x + \dots + C_{n-1} x^{n-1} + C_n x^n = 0$$

Chapter 5 Selected Exercises (Rudin)

has at least one real root between 0 and 1.

Let $f(x) = C_0 x + \frac{C_1}{2} x^2 + \dots + \frac{C_n}{n+1} x^{n+1}$, then clearly f is a differentiable real function (since C_0, C_1, \dots, C_n are real constants). Moreover, we have f(0) = 0 and

$$f(1) = C_0 + \frac{C_1}{2} + \dots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0$$

By the mean value theorem, there exists a point $x_0 \in (0,1)$ such that $f'(x_0) = \frac{f(1)-f(0)}{1-0} = 0$, i.e.,

$$C_0 + C_1 x_0 + \dots + C_{n-1} x_0^{n-1} + C_n x_0^n = 0$$

5. Suppose f is defined and differentiable for every x > 0, and $f'(x) \to 0$ as $x \to +\infty$. Put g(x) = f(x+1) - f(x). Prove that $g(x) \to 0$ as $x \to +\infty$.

By the mean value theorem, for x > 0, let c(x) be a real number such that $c(x) \in (x, x + 1)$ and f'(c(x)) = f(x + 1) - f(x). Then $c(x) \to +\infty$ as $x \to +\infty$, which implies

$$g(x) = f'(c(x)) \to 0$$

6. Suppose (a) f is continuous for $x \ge 0$, (b) f'(x) exists for x > 0, (c) f(0) = 0, (d) f' is monotonically increasing. Put

$$g(x) = \frac{f(x)}{x} \quad (x > 0)$$

and prove that g is monotonically increasing.

Since $g'(x) = \frac{xf'(x) - f(x)}{x^2}$ where x > 0, by Theorem 5.11(a), it suffices to show that $xf'(x) - f(x) \ge 0$

for all x > 0. Since conditions (a), (b), and (c) hold, by the mean value theorem,

$$f(x) = f(x) - f(0) = f'(c)(x - 0) = xf'(c)$$

for some $c \in (0, x)$. Since c < x here, by condition (d), $xf'(c) \le xf'(x)$. So we conclude that $f(x) \le xf'(x)$.

Chapter 5 Selected Exercises (Rudin)

7. Suppose f'(x), g'(x) exist, $g'(x) \neq 0$, and f(x) = g(x) = 0. Prove that

$$\lim_{t \to x} \frac{f(t)}{g(t)} = \frac{f'(x)}{g'(x)}$$

(This holds also for complex functions.)

We have

$$\lim_{t \to x} \frac{f(t)}{g(t)} = \lim_{t \to x} \frac{\frac{f(t) - f(x)}{t - x}}{\frac{g(t) - g(x)}{t - x}} = \frac{\lim_{t \to x} \frac{f(t) - f(x)}{t - x}}{\lim_{t \to x} \frac{g(t) - g(x)}{t - x}} = \frac{f'(x)}{g'(x)}$$

where the first equality shown above follows by f(x) = g(x) = 0.

8. Suppose f' is continuous on [a, b] and $\varepsilon > 0$. Prove that there exists $\delta > 0$ such that

$$\left|\frac{f(t) - f(x)}{t - x} - f'(x)\right| < \varepsilon$$

whenever $0 < |t - x| < \delta$, $a \le x \le b$, $a \le t \le b$. (This could be expressed by saying that f is *uniformly differentiable* on [a, b] if f' is continuous on [a, b].) Does this hold for vector-valued functions too?

(i) By the mean-valued theorem, there exists c(t) between x and t such that $\frac{f(t)-f(x)}{t-x} = f'(c(t))$. Since f' is continuous on [a, b], and since $c(t) \to x$ as $t \to x$ (by the squeeze theorem (https://en.wikipedia.org/wiki/Squeeze_theorem)), we have

$$\frac{f(t) - f(x)}{t - x} = f'(c(t)) \to f'(x)$$

as $t \to x$. This completes the proof.

(ii) Yes. Provided that each component of a given vector-valued function has continuous derivative on an interval.

9. Let *f* be a continuous real function on R^1 , of which it is known that f'(x) exists for all $x \neq 0$ and that $f'(x) \rightarrow 3$ as $x \rightarrow 0$. Does it follow that f'(0) exists?

Yes. Note that $f'(x) \rightarrow 3$ as $x \rightarrow 0$, so by L'Hospital's rule,

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} f'(x) = 3$$

Chapter 5 Selected Exercises (Rudin)

10. Suppose f and g are complex differentiable functions on (0, 1), $f(x) \to 0$, $g(x) \to 0$, $f'(x) \to A$, $g'(x) \to B$ as $x \to 0$, where A and B are complex numbers, $B \neq 0$. Prove that

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{A}{B}$$

Compare with Example 5.18. Hint:

$$\frac{f(x)}{g(x)} = \left\{\frac{f(x)}{x} - A\right\} \cdot \frac{x}{g(x)} + A \cdot \frac{x}{g(x)}$$

Apply Theorem 5.13 to the real and imaginary parts of f(x)/x and g(x)/x.

Following the hint, write $f = f_1 + if_2$, where f_1 and f_2 are real functions on (0, 1). Then $f_1(x) \to 0$ and $f'_1(x) \to \text{Re}(A)$ as $x \to 0$, and by L'Hospital's rule,

$$\lim_{x \to 0} \operatorname{Re}\left[\frac{f(x)}{x}\right] = \lim_{x \to 0} \frac{f_1(x)}{x} = \lim_{x \to 0} f_1'(x) = \operatorname{Re}(A)$$

Similarly we have $\operatorname{Im}\left[\frac{f(x)}{x}\right] \to \operatorname{Im}(A)$, $\operatorname{Re}\left[\frac{g(x)}{x}\right] \to \operatorname{Re}(B)$, and $\operatorname{Im}\left[\frac{g(x)}{x}\right] \to \operatorname{Im}(B)$ as $x \to 0$. So

$$\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \left(\operatorname{Re} \left[\frac{f(x)}{x} \right] + i \operatorname{Im} \left[\frac{f(x)}{x} \right] \right)$$
$$= \lim_{x \to 0} \operatorname{Re} \left[\frac{f(x)}{x} \right] + i \lim_{x \to 0} \operatorname{Im} \left[\frac{f(x)}{x} \right]$$
$$= \operatorname{Re}(A) + i \operatorname{Im}(A)$$
$$= A$$

and similarly $\lim_{x\to 0} \frac{g(x)}{x} = B$ or the limit of its reciprocal

$$\lim_{x \to 0} \frac{x}{g(x)} = \lim_{x \to 0} \frac{1}{\frac{g(x)}{x}} = \frac{1}{\lim_{x \to 0} \frac{g(x)}{x}} = \frac{1}{B}$$

exists, since $B \neq 0$. The result will therefore follow.

11. Suppose *f* is defined in a neighborhood of *x*, and suppose f''(x) exists. Show that

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x)$$

Show by an example that the limit may exist even f''(x) does not. *Hint:* Use Theorem 5.13.

(i) By L'Hospital's rule,

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2}$$

$$= \lim_{h \to 0} \frac{f'(x+h) - f'(x-h)}{2h}$$

$$= \frac{1}{2} \lim_{h \to 0} \left[\frac{f'(x+h) - f'(x)}{h} + \frac{f'(x) - f'(x-h)}{h} \right]$$

$$= \frac{1}{2} \left[\lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} + \lim_{h \to 0} \frac{f'(x) - f'(x-h)}{h} \right]$$

$$= \frac{1}{2} \left[f''(x) + f''(x) \right]$$

$$= f''(x)$$

(ii) For example, let

$$f(x) = \begin{cases} x+1 & x < 0\\ 0 & x = 0\\ x-1 & x > 0 \end{cases}$$

12. If
$$f(x) = |x|^3$$
, compute $f'(x)$, $f''(x)$ for all real x , and show that $f^{(3)}(0)$ does not exist.

(i) For
$$x > 0$$
, $f'(x) = (x^3)' = 3x^2$. For $x < 0$, $f'(x) = (-x^3)' = -3x^2$. Finally,
 $f'(0) = \lim_{h \to 0} \frac{|h|^3}{h} = \lim_{h \to 0} \operatorname{sgn}(h)h^2 = 0$

where

$$\operatorname{sgn}(h) = \begin{cases} 1 & h > 0\\ -1 & h < 0 \end{cases}$$

(ii) For x > 0, $f''(x) = (3x^2)' = 6x$. For x < 0, $f''(x) = (-3x^2)' = -6x$. Finally, use part (i),

$$f''(0) = \lim_{h \to 0} \frac{f'(h)}{h} = \lim_{h \to 0} \frac{\operatorname{sgn}(h)3h^2}{h} = \operatorname{sgn}(h)3\lim_{h \to 0} h = 0$$

(iii) To show that $f^{(3)}(0)$ does not exist, just write

$$\frac{f''(h) - f''(0)}{h} = \frac{f''(h)}{h} = \frac{\operatorname{sgn}(h)6h}{h} = 6\operatorname{sgn}(h)$$

The result then follows.

Chapter 5 Selected Exercises (Rudin)

13. Suppose *a* and *x* are real numbers, c > 0, and *f* is defined on [-1, 1] by

$$f(x) = \begin{cases} x^a \sin(|x|^{-c}) & \text{(if } x \neq 0) \\ 0 & \text{(if } x = 0) \end{cases}$$

Prove the following statements:

(a) *f* is continuous if and only if *a* > 0.
(b) *f*'(0) exists if and only if *a* > 1.
(c) *f*' is bounded if and only if *a* ≥ 1 + *c*.
(d) *f*' is continuous if and only if *a* > 1 + *c*.
(e) *f*''(0) exists if and only if *a* > 2 + *c*.
(f) *f*'' is bounded if and only if *a* ≥ 2 + 2*c*.
(g) *f*'' is continuous if and only if *a* > 2 + 2*c*.

(a) It is clear that f is continuous at any nonzero point x, so we only consider the point x = 0. If a > 0, then

$$|f(x)| = |x^a \sin(|x|^{-c})| \le |x^a| \to 0$$
 as $x \to 0$

By squeezing, $f(x) \to 0$ as $x \to 0$, and hence f is continuous at 0. Conversely, if $a \le 0$, let $x_n = (2n\pi + \frac{\pi}{2})^{-\frac{1}{c}}$ for n = 1, 2, ... Then $x_n \to 0$ as $n \to \infty$, but $-\frac{a}{c} \ge 0$ implies

$$f(x_n) = \left(2n\pi + \frac{\pi}{2}\right)^{-\frac{a}{c}} \ge 1 \quad \text{for all } n$$

This shows that $\lim_{n\to\infty} f(x_n) \neq 0 = f(0)$, and hence f is not continuous at 0.

(b) If a > 1 or a - 1 > 0, then

$$\left|\frac{f(x) - f(0)}{x}\right| = \left|\frac{x^a \sin\left(|x|^{-c}\right)}{x}\right| \le |x^{a-1}| \to 0 \quad \text{as } x \to 0$$

By squeezing, f'(0) = 0. Conversely, if $a \le 1$ or $a - 1 \le 0$, let $x_n = (2n\pi + \frac{\pi}{2})^{-\frac{1}{c}}$ and $y_n = (2n\pi)^{-\frac{1}{c}}$ for n = 1, 2, ... Then $x_n \to 0$ and $y_n \to 0$ as $n \to \infty$, but $-\frac{a-1}{c} \ge 0$ implies

$$\frac{f(x_n) - f(0)}{x_n} = \left(2n\pi + \frac{\pi}{2}\right)^{-\frac{a-1}{c}} \ge 1 \quad \text{for all } n$$

Also, we have $\frac{f(y_n)-f(0)}{y_n}=0$ for all n. This gives

$$\lim_{n\to\infty}\frac{f(x_n)-f(0)}{x_n}\neq 0=\lim_{n\to\infty}\frac{f(y_n)-f(0)}{y_n}$$

14. Let f be a differentiable real function defined on (a, b). Prove that f is convex if and only if f' is monotonically increasing. Assume next that f''(x) exists for every $x \in (a, b)$, and prove that f is convex if and only if $f''(x) \ge 0$ for all $x \in (a, b)$.

(i) If f is convex. For $x, y, t \in (a, b)$ with x < t < y, and let $c = \frac{f(y) - f(x)}{y - x}$. By Exercise 4.23,

$$c \ge rac{f(t) - f(x)}{t - x}$$
 and $c \le rac{f(y) - f(t)}{y - t}$

Since f is differentiable, we have $c \ge f'(x)$ and $c \le f'(y)$ as $t \to x$ and $t \to y$, respectively. Hence $f'(x) \le f'(y)$. Conversely, if f' is monotonically increasing, given $x, y \in (a, b)$ with x < y, and $\lambda \in (0, 1)$. Put $t = \lambda x + (1 - \lambda)y$, then

$$t-x = (1-\lambda)(y-x)$$
 and $y-t = \lambda(y-x)$

Since f' is monotonically increasing, applying the mean value theorem,

$$\frac{f(t) - f(x)}{t - x} = f'(c_1) \le f'(c_2) = \frac{f(y) - f(t)}{y - t}$$

for some $c_1 \in (x, t)$ and $c_2 \in (t, y)$. It follows that

$$\lambda \left[f(t) - f(x) \right] \le (1 - \lambda) \left[f(y) - f(t) \right]$$

or

$$f(t) \le \lambda f(x) + (1 - \lambda)f(y)$$

(ii) We first show that f' is monotonically increasing if and only if $f''(x) \ge 0$ for all $x \in (a, b)$. The sufficiency part is the result of Theorem 5.11(a). To show the necessity part, given $x \in (a, b)$, observe that the fraction $\frac{f'(t)-f'(x)}{t-x}$ is always nonnegative, for all $t \in (a, b)$ with $t \ne x$, since f' is monotonically increasing. Thus by definition,

$$f''(x) = \lim_{t \to x} \frac{f'(t) - f'(x)}{t - x} \ge 0$$

Chapter 5 Selected Exercises (Rudin)

Hence, f is convex if and only if f' is monotonically increasing [by part (i)], if and only if $f''(x) \ge 0$ for all $x \in (a, b)$.

15. Suppose $a \in R^1$, f is a twice-differentiable real function on (a, ∞) , and M_0 , M_1 , M_2 are the least upper bounds of |f(x)|, |f'(x)|, |f''(x)|, respectively, on (a, ∞) . Prove that

$$M_1^2 \le 4M_0M_2$$

Hint: If h > 0, Taylor's theorem shows that

$$f'(x) = \frac{1}{2h} \left[f(x+2h) - f(x) \right] - hf''(\xi)$$

for some $\xi \in (x, x + 2h)$. Hence

$$\left|f'(x)\right| \le hM_2 + \frac{M_0}{h}$$

To show that $M_1^2 = 4M_0M_2$ can actually happen, take a = -1, define

$$f(x) = \begin{cases} 2x^2 - 1 & (-1 < x < 0) \\ \frac{x^2 - 1}{x^2 + 1} & (0 \le x < \infty) \end{cases}$$

and show that $M_0 = 1$, $M_1 = 4$, $M_2 = 4$. Does $M_1^2 \le 4M_0M_2$ hold for vector-valued functions too?

(i) First, note that M_0M_2 be of the form $0 \cdot \infty$ is exceptional. Now we consider the following four cases.

Case 1: $M_0 = \infty$ or $M_2 = \infty$. The result is trivial.

Case 2: $M_0 = 0$. Then f(x) = 0, and then f'(x) = f''(x) = 0 for all $x \in (a, \infty)$. It follows that $M_1 = M_2 = 0$, and the result is also trivial.

Case 3: $0 < M_0 < \infty$ and $M_2 = 0$. Then f''(x) = 0, and then f'(x) = c and f(x) = cx + d for some constants $c, d \in R$, for all $x \in (a, \infty)$. Since M_0 is finite, we need c = 0 and then $M_1 = 0$. The result therefore follows.

Case 4: $0 < M_0 < \infty$ and $0 < M_2 < \infty$. Following the hint, use Taylor's theorem (Theorem 5.15), for $x \in (a, \infty)$ and h > 0 there exists $\xi \in (x, x + 2h)$ such that

$$f(x+2h) = f(x) + f'(x) \cdot 2h + \frac{f''(\xi)}{2} \cdot (2h)^2$$
$$= f(x) + f'(x) \cdot 2h + f''(\xi) \cdot 2h^2$$

Thus

$$f'(x) = \frac{1}{2h} \left[f(x+2h) - f(x) \right] - hf''(\xi)$$

and hence

$$\left|f'(x)\right| \le hM_2 + \frac{M_0}{h}$$

By assumption, we may put $h=\sqrt{rac{M_0}{M_2}}$ and the inequality becomes

$$\left|f'(x)\right| \le 2\sqrt{M_0 M_2}$$

implying $M_1 \le 2\sqrt{M_0M_2}$ or $M_1^2 \le 4M_0M_2$. (ii) By some calculation,

$$(-1 < x < 0) \begin{cases} f'(x) = 4x \\ f''(x) = 4 \end{cases}$$
$$(0 < x < \infty) \begin{cases} f'(x) = \frac{4x}{(x^2 + 1)^2} \\ f''(x) = \frac{-4(3x^2 - 1)}{(x^2 + 1)^3} \end{cases}$$

To find f'(0) and f''(0), calculate

$$\lim_{t \to 0+} \frac{f(t) - f(0)}{t} = \lim_{t \to 0+} \frac{\frac{t^2 - 1}{t^2 + 1} + 1}{t} = \lim_{t \to 0+} \frac{2t}{t^2 + 1} = 0$$
$$\lim_{t \to 0-} \frac{f(t) - f(0)}{t} = \lim_{t \to 0-} \frac{(2t^2 - 1) + 1}{t} = \lim_{t \to 0-} 2t = 0$$

Then f'(0) = 0. Next,

$$\lim_{t \to 0+} \frac{f'(t) - f'(0)}{t} = \lim_{t \to 0+} \frac{\frac{4t}{(t^2 + 1)^2}}{t} = \lim_{t \to 0+} \frac{4t}{(t^2 + 1)^2} = 4$$
$$\lim_{t \to 0-} \frac{f'(t) - f'(0)}{t} = \lim_{t \to 0-} \frac{4t}{t} = 4$$

Then f''(0) = 4. Now, $-1 \le f(x) < 1$ for $x \in (-1, \infty)$, and $\lim_{x\to\infty} f(x) = 1$, are both trivial. Hence $M_0 = 1$. Also, since f''(x) = 4 for $x \in (-1, 0]$, and $\lim_{x\to 0+} f''(x) = 4$, we see that f is twice-differentiable on $(-1, \infty)$. To show that |f''(x)| < 4 for all x > 0, observe that

$$3x^2 - 1 < 3x^2 + 1 < x^6 + 3x^4 + 3x^2 + 1 = (x^2 + 1)^3$$

and that $\left|\frac{3x^2-1}{(x^2+1)^3}\right| = \frac{3x^2-1}{(x^2+1)^3} < 1$ for x > 0. So

$$\left| f''(x) \right| = 4 \left| \frac{3x^2 - 1}{(x^2 + 1)^3} \right| < 4$$

Chapter 5 Selected Exercises (Rudin)

for
$$x > 0$$
, and hence $M_2 = 4$. Finally, since $0 \le f'(x) < 4$ for $x \in (-1, 0]$, and

$$2x \le 1 + x^2 < 1 + 2x^2 + x^4 = (x^2 + 1)^2$$

for x > 0. We see that

$$\left|f'(x)\right| = \left|\frac{4x}{(x^2+1)^2}\right| = 2\left[\frac{2x}{(x^2+1)^2}\right] < 2 < 4$$

for x > 0, and hence $M_1 = 4$ (since $\lim_{t \to (-1)+} f'(x) = -4$).

(iii) Yes. In R^k , let $\mathbf{f}(x) = (f_1(x), \dots, f_k(x))$ where each f_j $(1 \le j \le k)$ is a twice-differentiable real function. Note that M_0M_2 be of the form $0 \cdot \infty$ is exceptional, and we consider the following four cases. (The first three cases are simple extensions of k = 1.)

Case 1: $M_0 = \infty$ or $M_2 = \infty$. The result is trivial.

Case 2: $M_0 = 0$. Then $f_j(x) = 0$, and then $f'_j(x) = f''_j(x) = 0$ for all $x \in (a, \infty)$ and for all j. It follows that $M_1 = M_2 = 0$, and the result is also trivial.

Case 3: $0 < M_0 < \infty$ and $M_2 = 0$. Then $f''_j(x) = 0$, and then $f'_j(x) = c_j$ and $f_j(x) = c_jx + d_j$ for some constants $c_j, d_j \in R$, for all $x \in (a, \infty)$ and for all j. Since M_0 is finite, we need $c_j = 0$ for each j, and then $M_1 = 0$. The result therefore follows.

Case 4: $0 < M_0 < \infty$ and $0 < M_2 < \infty$. If $M_1 = 0$ then we are done. If $M_1 > 0$, let $p \in R^1$ be such that $0 , and let <math>x_0 \in (a, \infty)$ be such that $|\mathbf{f}'(x_0)| > p$. Put $\mathbf{u} = \frac{\mathbf{f}'(x_0)}{|\mathbf{f}'(x_0)|}$. Consider the real-valued function $g(x) = \mathbf{u} \cdot \mathbf{f}(x)$ for $x \in (a, \infty)$, and note that g is twice-differentiable. Let N_0 , N_1 , N_2 be the least upper bounds of |g(x)|, |g'(x)|, |g''(x)|, respectively. Since $|\mathbf{u}| = 1$, by Schwarz inequality [Theorem 1.37(d)],

$$|g(x)| \le |\mathbf{u}| |\mathbf{f}(x)| = |\mathbf{f}(x)|, \quad |g''(x)| \le |\mathbf{u}| |\mathbf{f}''(x)| = |\mathbf{f}''(x)|$$

for all $x \in (a, \infty)$. So that $N_0 \leq M_0$ and $N_2 \leq M_2$. Also, since

$$N_1 \ge g'(x_0) = \mathbf{u} \cdot \mathbf{f}'(x_0) = |\mathbf{f}'(x_0)| > p$$

and since $N_1 \le 4N_0N_2$ [by part (i)], we have $p < 4M_0M_2$. Since p is arbitrarily chosen such that $0 , we conclude that <math>M_1 \le 4M_0M_2$.

16. Suppose f is twice-differentiable on $(0, \infty)$, f'' is bounded on $(0, \infty)$, and $f(x) \to 0$ as $x \to \infty$. Prove that $f'(x) \to 0$ as $x \to \infty$. *Hint:* Let $a \to \infty$ in Exercise 15.

Let M > 0 be such that $|f''(x)| \le M$ for $x \in (0, \infty)$. Given $a \in (0, \infty)$, let $M_0(a)$, $M_1(a)$, $M_2(a)$ be the least upper bounds of |f(x)|, |f'(x)|, |f''(x)|, respectively, for $x \in (a, \infty)$. Then clearly $M_2(a) \le M$ for all a. Since $f(x) \to 0$ as $x \to \infty$, for every $\varepsilon > 0$ there exists $a_0 \in (0, \infty)$ such that $|f(x)| < \varepsilon$ for all $x \in (a_0, \infty)$. It follows that $M_0(a_0) \le \varepsilon$ and that (by Exercise 15)

$$M_1^2(a_0) \le 4M_0(a_0)M_2(a_0) \le 4M\varepsilon$$

i.e., $|f'(x)| \leq 2\sqrt{M\varepsilon}$ for all $x \in (a_0, \infty)$. Hence $f'(x) \to 0$ as $x \to \infty$.

Chapter 5 Selected Exercises (Rudin)

17. Suppose *f* is a real, three times differentiable function on [-1, 1], such that

$$f(-1) = 0$$
, $f(0) = 0$, $f(1) = 1$, $f'(0) = 0$

Prove that $f^{(3)}(x) \ge 3$ for some $x \in (-1, 1)$. Note that equality holds for $\frac{1}{2}(x^3 + x^2)$. *Hint:* Use Theorem 5.15, with $\alpha = 0$ and $\beta = \pm 1$, to show that there exist $s \in (0, 1)$ and $t \in (-1, 0)$ such that

$$f^{(3)}(s) + f^{(3)}(t) = 6$$

Following the hint, use Taylor's theorem (Theorem 5.15), there exists $s \in (0, 1)$ and $t \in (-1, 0)$ such that

$$1 = f(1) = f(0) + f'(0) + \frac{f''(0)}{2} + \frac{f^{(3)}(s)}{6} = \frac{f''(0)}{2} + \frac{f^{(3)}(s)}{6}$$
$$0 = f(-1) = f(0) - f'(0) + \frac{f''(0)}{2} - \frac{f^{(3)}(s)}{6} = \frac{f''(0)}{2} - \frac{f^{(3)}(t)}{6}$$

Subtract them we get

$$f^{(3)}(s) + f^{(3)}(t) = 6$$

It follows that either $f^{(3)}(s) \ge 3$ or $f^{(3)}(t) \ge 3$, which completes the proof.

18. Suppose f is a real function on [a, b], n is a positive integer, and $f^{(n-1)}$ exists for every $t \in [a, b]$. Let α , β , and P be as in Taylor's theorem (5.15). Define

$$Q(t) = \frac{f(t) - f(\beta)}{t - \beta}$$

for $t \in [a, b]$, $t \neq \beta$, differentiate

$$f(t) - f(\beta) = (t - \beta)Q(t)$$

n-1 times at $t = \alpha$, and derive the following version of Taylor's theorem:

$$f(\beta) = P(\beta) + \frac{Q^{(n-1)}(\alpha)}{(n-1)!} (\beta - \alpha)^n$$

By induction, we easily conclude that

$$f^{(k)}(\alpha) = kQ^{(k-1)}(\alpha) - (\beta - \alpha)Q^{(k)}(\alpha)$$

and then

$$\frac{f^{(k)}(\alpha)}{k!} (\beta - \alpha)^k = \frac{Q^{(k-1)}(\alpha)}{(k-1)!} (\beta - \alpha)^k - \frac{Q^{(k)}(\alpha)}{k!} (\beta - \alpha)^{k+1}$$

for $k = 1, 2, \ldots, n-1$. It follows that

$$P(\beta) = f(\alpha) + \sum_{k=1}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (\beta - \alpha)^k$$
$$= f(\alpha) + Q(\alpha)(\beta - \alpha) - \frac{Q^{(n-1)}(\alpha)}{(n-1)!} (\beta - \alpha)^n$$
$$= f(\alpha) + [f(\beta) - f(\alpha)] - \frac{Q^{(n-1)}(\alpha)}{(n-1)!} (\beta - \alpha)^n$$
$$= f(\beta) - \frac{Q^{(n-1)}(\alpha)}{(n-1)!} (\beta - \alpha)^n$$

or $f(\beta) = P(\beta) + \frac{Q^{(n-1)}(\alpha)}{(n-1)!} (\beta - \alpha)^n$.

19. Suppose f is defined in (-1, 1) and f'(0) exists. Suppose $-1 < \alpha_n < \beta_n < 1$, $\alpha_n \to 0$, and $\beta_n \to 0$ as $n \to \infty$. Define the difference quotients

$$D_n = \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n}$$

Prove the following statements:

(a) If $\alpha_n < 0 < \beta_n$, then $\lim D_n = f'(0)$. (b) If $0 < \alpha_n < \beta_n$ and $\{\beta_n/(\beta_n - \alpha_n)\}$ is bounded, then $\lim D_n = f'(0)$. (c) If f' is continuous in (-1, 1), then $\lim D_n = f'(0)$. Give an example in which f is differentiable in (-1, 1) (but f' is not continuous at 0) and in which α_n , β_n tend to 0 in such a way that $\lim D_n$ exists but is different from f'(0).

(a) Denote $\lambda_n = \frac{\beta_n}{\beta_n - \alpha_n}$ for n = 1, 2, ..., then clearly $0 < \lambda_n < 1$ (since $\alpha_n < 0 < \beta_n$). Now, we can write

$$D_n = \frac{f(\beta_n) - f(0) + f(0) - f(\alpha_n)}{\beta_n - \alpha_n}$$

= $\frac{\beta_n}{\beta_n - \alpha_n} \cdot \frac{f(\beta_n) - f(0)}{\beta_n} + \frac{-\alpha_n}{\beta_n - \alpha_n} \cdot \frac{f(0) - f(\alpha_n)}{-\alpha_n}$
= $\lambda_n \cdot \frac{f(\beta_n) - f(0)}{\beta_n} + (1 - \lambda_n) \cdot \frac{f(\alpha_n) - f(0)}{\alpha_n}$

Chapter 5 Selected Exercises (Rudin)

Since f'(0) exists, by definition, for $\varepsilon > 0$ there exists a positive integer N such that $n \ge N$ implies

$$\left|\frac{f(\beta_n) - f(0)}{\beta_n} - f'(0)\right| < \varepsilon \quad \text{and} \quad \left|\frac{f(\alpha_n) - f(0)}{\alpha_n} - f'(0)\right| < \varepsilon$$

So $n \ge N$ implies

$$\begin{aligned} \left| D_n - f'(0) \right| &= \left| \lambda_n \left[\frac{f(\beta_n) - f(0)}{\beta_n} - f'(0) \right] + (1 - \lambda_n) \left[\frac{f(\alpha_n) - f(0)}{\alpha_n} - f'(0) \right] \right| \\ &\leq \lambda_n \left| \frac{f(\beta_n) - f(0)}{\beta_n} - f'(0) \right| + (1 - \lambda_n) \left| \frac{f(\alpha_n) - f(0)}{\alpha_n} - f'(0) \right| \\ &< \lambda_n \varepsilon + (1 - \lambda_n) \varepsilon \\ &= \varepsilon \end{aligned}$$

Hence $\lim_{n\to\infty} D_n = f'(0)$.

(b) Let λ_n be the same notation as in part (a), then we know that $\lambda_n > 0$ for each n. Since $\{\beta_n/(\beta_n - \alpha_n)\}$ is bounded, there exists M > 0 such that $\lambda_n \leq M$ for each n. Now, we can write

$$D_n = \frac{[f(\beta_n) - f(0)] - [f(\alpha_n) - f(0)]}{\beta_n - \alpha_n}$$

= $\frac{\beta_n}{\beta_n - \alpha_n} \cdot \frac{f(\beta_n) - f(0)}{\beta_n} + \frac{-\alpha_n}{\beta_n - \alpha_n} \cdot \frac{f(\alpha_n) - f(0)}{\alpha_n}$
= $\lambda_n \cdot \frac{f(\beta_n) - f(0)}{\beta_n} + (1 - \lambda_n) \cdot \frac{f(\alpha_n) - f(0)}{\alpha_n}$

Then if we let ε and N be the same meaning as in part (a), it follows that $n \ge N$ implies

$$\begin{aligned} \left| D_n - f'(0) \right| &= \left| \lambda_n \left[\frac{f(\beta_n) - f(0)}{\beta_n} - f'(0) \right] + (1 - \lambda_n) \left[\frac{f(\alpha_n) - f(0)}{\alpha_n} - f'(0) \right] \right| \\ &\leq \lambda_n \left| \frac{f(\beta_n) - f(0)}{\beta_n} - f'(0) \right| + (1 + \lambda_n) \left| \frac{f(\alpha_n) - f(0)}{\alpha_n} - f'(0) \right| \\ &< \lambda_n \varepsilon + (1 + \lambda_n) \varepsilon \\ &\leq (1 + 2M) \varepsilon \end{aligned}$$

Hence $\lim_{n\to\infty} D_n = f'(0)$.

(c) By the mean value theorem, for each n there exists $\gamma_n \in (\alpha_n, \beta_n)$ such that

$$D_n = f'(\gamma_n)$$

By squeezing, we see that $\gamma_n \to 0$ as $n \to \infty$. Since f' is continuous, $D_n = f'(\gamma_n) \to f'(0)$ as $n \to \infty$.

Chapter 5 Selected Exercises (Rudin)

Inspired from Exercise 13, we give an example as below. Let $f: (-1,1) \rightarrow R^1$ be defined by

$$f(x) = \begin{cases} 0 & x = 0\\ x^2 \sin\left(\frac{1}{x}\right) & \text{otherwise} \end{cases}$$

Then $f'(x) = 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$ for $x \neq 0$, and

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0$$

i.e., such f is differentiable on (-1, 1) but f' is not continuous at 0. Moreover, let $\alpha_n = (2n\pi + \frac{\pi}{2})^{-1}$ and $\beta_n = (2n\pi)^{-1}$ for n = 1, 2, ... Then $0 < \alpha_n < \beta_n < 1$, $\alpha_n \to 0$, and $\beta_n \to 0$ as $n \to \infty$. But

$$D_n = \frac{-\left(2n\pi + \frac{\pi}{2}\right)^{-2}}{(2n\pi)^{-1} - \left(2n\pi + \frac{\pi}{2}\right)^{-1}} = \frac{-1}{\left(2n\pi + \frac{\pi}{2}\right)^2 (2n\pi)^{-1} - \left(2n\pi + \frac{\pi}{2}\right)} = \frac{-1}{\left(2n\pi + \frac{\pi}{2}\right)\left(1 + \frac{1}{4n}\right) - \left(2n\pi + \frac{\pi}{2}\right)} = \frac{-4n}{2n\pi + \frac{\pi}{2}}$$

which follows that $\lim_{n\to\infty} D_n = -\frac{2}{\pi} \neq 0 = f'(0)$.

20. Formulate and prove an inequality which follows form Taylor's theorem and which remains valid for vector-valued functions.

(i) The statement in the real-valued case: [i]Suppose f is a real function on [a, b], n is a positive integer, $f^{(n-1)}$ is continuous on [a, b], $f^{(n)}(t)$ exists for every $t \in (a.b)$. Let

$$P(t) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (t-a)^k$$

then there exists $x \in (a, b)$ such that[/i]

$$|f(b) - P(b)| \le \left|\frac{f^{(n)}(x)}{n!}\right| (b-a)^n$$

Chapter 5 Selected Exercises (Rudin)

The proof of the assertion directly follows from the Taylor' theorem.

(ii) The statement in the vector-valued case: [i]Suppose f is a mapping on [a, b] into R^k , n is a positive integer, $f^{(n-1)}$ is continuous on [a, b], $f^{(n)}(t)$ exists for every $t \in (a.b)$. Let

$$\mathbf{P}(t) = \sum_{k=0}^{n-1} \frac{\mathbf{f}^{(k)}(a)}{k!} (t-a)^k$$

then there exists $x \in (a, b)$ such that[/i]

$$|\mathbf{f}(b) - \mathbf{P}(b)| \le \left|\frac{\mathbf{f}^{(n)}(x)}{n!}\right| (b-a)^n$$

To show it, note that $|\mathbf{f}(b) - \mathbf{P}(b)| = 0$ is a trivial case. If $|\mathbf{f}(b) - \mathbf{P}(b)| \neq 0$, define

$$\mathbf{u} = \frac{1}{|\mathbf{f}(b) - \mathbf{P}(b)|} \left[\mathbf{f}(b) - \mathbf{P}(b)\right]$$

Then $\mathbf{u} \cdot \mathbf{f}$ is a real-valued function on [a, b], satisfying all the conditions in the statement of part (i). Since $(\mathbf{u} \cdot \mathbf{f})^{(k)} = \mathbf{u} \cdot \mathbf{f}^{(k)}$ for k = 0, 1, 2, ..., n, and

$$\sum_{k=0}^{n-1} \frac{(\mathbf{u} \cdot \mathbf{f})^{(k)}(a)}{k!} (t-a)^k = \sum_{k=0}^{n-1} \frac{\mathbf{u} \cdot \mathbf{f}^{(k)}(a)}{k!} (t-a)^k$$
$$= \mathbf{u} \cdot \left[\sum_{k=0}^{n-1} \frac{\mathbf{f}^{(k)}(a)}{k!} (t-a)^k \right]$$
$$= \mathbf{u} \cdot \mathbf{P}(t)$$

by part (i) we have

$$\left|\mathbf{u}\cdot\mathbf{f}(b)-\mathbf{u}\cdot\mathbf{P}(b)\right| \le \left|\frac{\mathbf{u}\cdot\mathbf{f}^{(n)}(x)}{n!}\right| (b-a)^n \le \left|\frac{\mathbf{f}^{(n)}(x)}{n!}\right| (b-a)^n$$

for some $x \in (a, b)$, where the above second inequality follows by the fact $|\mathbf{u}| = 1$, and by the Schwarz inequality. On the other hand,

$$\mathbf{u} \cdot \mathbf{f}(b) - \mathbf{u} \cdot \mathbf{P}(b) = \mathbf{u} \cdot [\mathbf{f}(b) - \mathbf{P}(b)] = |\mathbf{f}(b) - \mathbf{P}(b)|$$

we then conclude that

$$|\mathbf{f}(b) - \mathbf{P}(b)| \le \left|\frac{\mathbf{f}^{(n)}(x)}{n!}\right| (b-a)^n$$

Chapter 5 Selected Exercises (Rudin)

- **21** Let *E* be a closed subset of R^1 . We saw in Exercise 22, Chap. 4, that there is a real continuous function *f* on R^1 whose zero set is *E*. It is possible, for each closed set *E*, to find such an *f* which is differentiable on R^1 , or one which is *n* times differentiable, or even one which has derivatives of all orders on R^1 ?
- 22. Suppose *f* is a real function on (-∞, ∞). Call *x* a *fixed point* of *f* if *f*(*x*) = *x*.
 (a) If *f* is differentiable and *f'*(*t*) ≠ 1 for every real *t*, prove that *f* has at most one fixed point.
 (b) Show that the function *f* defined by

$$f(t) = t + (1 + e^t)^{-1}$$

has no fixed point, although 0 < f'(t) < 1 for all real t. (c) However, if there is a constant A < 1 such that $|f'(t)| \le A$ for all real t, prove that a fixed point x of f exists, and that $x = \lim x_n$, where x_1 is an arbitrary real number and

$$x_{n+1} = f(x_n)$$

for x = 1, 2, 3, ...

(d) Show that the process described in (c) can be visualized by the zig-zag path

$$(x_1, x_2) \rightarrow (x_2, x_2) \rightarrow (x_2, x_3) \rightarrow (x_3, x_3) \rightarrow (x_3, x_4) \rightarrow \cdots$$

(a) Suppose there are two fixed points of f, saying x and y. W.l.o.g., let x < y. Since f is differentiable, by the mean value theorem, there exists a point $t \in (x, y)$ such that f(y) - f(x) = (y - x)f'(t). But since f(x) = x and f(y) = y, we have

$$y - x = (y - x)f'(t)$$

implying f'(t) = 1.

(b) Note that f(t) = t if and only if $(1 + e^t)^{-1} = 0$, which is impossible. So f has no fixed point. Next, observe that

$$f'(t) = 1 - \frac{e^t}{(1+e^t)^2} \in (0,1)$$

since $\frac{e^t}{(1+e^t)^2} \in (0,1)$.

(c) The uniqueness of the fixed point x of f follows by part (a). To show the existence, given $x_1 \in R^1$ and define

$$x_{n+1} = f(x_n)$$

Chapter 5 Selected Exercises (Rudin)

for n = 1, 2, ... Then by induction and by the mean value theorem,

$$\begin{aligned} x_{n+1} - x_n &| = |f(x_n) - f(x_{n-1})| \\ &= |f'(c_n) (x_n - x_{n-1})| \\ &\leq A |x_n - x_{n-1}| \\ &\leq A^2 |x_{n-1} - x_{n-2}| \\ &\vdots \\ &\leq A^{n-1} |x_2 - x_1| \end{aligned}$$

Since 0 < A < 1, for every $\varepsilon > 0$ there exists a positive N such that $\frac{A^N}{1-A} |x_2 - x_1| < \varepsilon$. It follows that for integers m, n with $n \ge m \ge N + 1$,

$$\begin{aligned} |x_n - x_m| &\leq |x_{m+1} - x_m| + |x_{m+2} - x_{m+1}| + \dots + |x_n - x_{n-1}| \\ &\leq (A^{m-1} + A^m + \dots + A^{n-2}) |x_2 - x_1| \\ &\leq \frac{A^{m-1}}{1 - A} |x_2 - x_1| \\ &\leq \frac{A^N}{1 - A} |x_2 - x_1| \\ &< \varepsilon \end{aligned}$$

i.e., $\{x_n\}$ forms a Cauchy sequence in R^1 , and then $\lim_{n\to\infty} x_n = x$ for some $x \in R^1$. Note that such x is the desired fixed point of f, since

$$f(x) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n+1} = x$$

(d) The visualization is clear.

23. The function *f* defined by

$$f(x) = \frac{x^3 + 1}{3}$$

has three fixed points, say α , β , γ , where

$$-2 < \alpha < -1, \quad 0 < \beta < 1, \quad 1 < \gamma < 2$$

For arbitrarily chosen x_1 , define $\{x_n\}$ by setting $x_{n+1} = f(x_n)$. (a) If $x_1 < \alpha$, prove that $x_n \to -\infty$ as $n \to \infty$. (b) If $\alpha < x_1 < \gamma$, prove that $x_n \to \beta$ as $n \to \infty$. (c) If $\gamma < x_1$, prove that $x_n \to +\infty$ as $n \to \infty$. Thus β can be located by this method, but α and γ cannot.

Define g(x) = f(x) - x, then $g(\alpha) = g(\beta) = g(\gamma) = 0$ and

$$g(-2) = -\frac{1}{3}, \quad g(-1) = 1, \quad g(0) = \frac{1}{3}, \quad g(1) = -\frac{1}{3}, \quad g(2) = 1$$

We claim that

- (1) g(x) < 0 for $x < \alpha$;
- (2) g(x) > 0 for $\alpha < x < \beta$;
- (3) g(x) < 0 for $\beta < x < \gamma$;
- (4) g(x) > 0 for $\gamma < x$.

Proof of the claim. We only prove (1) because the others are in a similar way. Since g is a polynomial of degree 3 and g has three zeros α , β , γ , it is impossible that g(x) = 0 whenever $x < \alpha$. Now, suppose there exists $x_0 < \alpha$ such that $g(x_0) > 0$, then $g(-2) < 0 < g(x_0)$ implies there exists c between -2 and x_0 , such that g(c) = 0. Since $-2 < \alpha$ and $x_0 < \alpha$, we have $c < \alpha$, which is impossible to happen. \Box

To complete the proof, we consider the following five cases.

Case 1: $x_1 < \alpha$. Suppose $x_n < \alpha$, then $x_{n+1} = \frac{x_n^3 + 1}{3} < \frac{\alpha^3 + 1}{3} = \alpha$ (since x^3 monotonically increases). So by mathematical induction, $x_n < \alpha$ for all n. It follows from (1) that $x_{n+1} = g(x_n) + x_n < x_n$ for each n, i.e., $\{x_n\}$ is monotonically decreasing. Suppose $\{x_n\}$ is bounded below, then $\lim_{n\to\infty} x_n = x'$ for some $x' \in R^1$, and

$$f(x') = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n+1} = x'$$

i.e., x' is a fixed point of f. Since g(x') = 0 and $x' \le x_1 < \alpha$, a contradiction occurs (since g has only three zeros). Hence $\lim_{n\to\infty} x_n = -\infty$.

Case 2: $\alpha < x_1 < \beta$. Suppose $\alpha < x_n < \beta$, then $x_{n+1} = \frac{x_n^3 + 1}{3} > \frac{\alpha^3 + 1}{3} = \alpha$ and $x_{n+1} = \frac{x_n^3 + 1}{3} < \frac{\beta^3 + 1}{3} = \beta$ (since x^3 monotonically increases). So by mathematical induction, $\alpha < x_n < \beta$ for all *n*. It follows from (2) that $x_{n+1} = g(x_n) + x_n > x_n$ for each *n*, i.e., $\{x_n\}$ is monotonically increasing. Since $\{x_n\}$ is bounded above (by β), we have $\lim_{n\to\infty} x_n = x'$ for some $x' \in R^1$, and

$$f(x') = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n+1} = x'$$

i.e., x' is a fixed point of f. Since $\alpha < x_1 \le x' \le \beta$, g(x') = 0, and g(x) > 0 for all $x \in (\alpha, \beta)$, this means that $x' = \beta$.

Case 3: $x_1 = \beta$. It is clear that $x_n = \beta$ for all *n*, implying $\lim_{n \to \infty} x_n = \beta$.

Case 4: $\beta < x_1 < \gamma$. Similar to Case 2, the conclusion is $\lim_{n\to\infty} x_n = \beta$.

Case 5: $\gamma < x_1$. Similar to Case 1, the conclusion is $\lim_{n \to \infty} x_n = +\infty$.

In summary, part (a) follows by Case 1; part (b) follows by Case 2, 3, and 4; part (c) follows by Case 5.

24. The process described in part (c) of Exercise 22 can of course also be applied to functions that map $(0, \infty)$ to $(0, \infty)$.

Fix some $\alpha > 1$, and put

$$f(x) = \frac{1}{2} \left(x + \frac{\alpha}{x} \right), \quad g(x) = \frac{\alpha + x}{1 + x}$$

Both f and g have $\sqrt{\alpha}$ as their fixed point in $(0, \infty)$. Try to explain, on the basis of properties of f and g, why the convergence in Exercise 16, Chap. 3, is so much more rapid than it is in Exercise 17. (Compare f' and g', draw the zig-zags suggested in Exercise 22.)

25. Suppose f is twice differentiable on [a, b], f(a) < 0, f(b) > 0, f'(x) ≥ δ > 0, and 0 ≤ f''(x) ≤ M for all x ∈ [a, b]. Let ξ be the unique point in (a, b) at which f(ξ) = 0. Complete the details in the following outline of *Newton's method* for computing ξ.
(a) Choose x₁ ∈ (ξ, b), and define {x_n} by

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Interpret this geometrically, in terms of a tangent to the graph of f. (b) Prove that $x_{n+1} \le x_n$ (c.f. Rudin's book says $x_{n+1} < x_n$, but sometimes "=" may hold. For example, consider f(x) = cx + d where c > 0, then $x_n = \xi = -d/c$ for n = 2, 3, ...) and that

$$\lim_{n \to \infty} x_n = \xi$$

(c) Use Taylor's theorem to show that

$$x_{n+1} - \xi = \frac{f''(t_n)}{2f'(x_n)} \left(x_n - \xi\right)^2$$

for some $t_n \in (\xi, x_n)$. (d) If $A = M/2\delta$, deduce that

$$0 \le x_{n+1} - \xi \le \frac{1}{A} \left[A \left(x_1 - \xi \right) \right]^{2^n}$$

(Compare with Exercise 16 and 18, Chap. 3.)

(e) Show that Newton's method amounts to finding a fixed point of the function g defined by

$$g(x) = x - \frac{f(x)}{f'(x)}$$

How does g'(x) behave for x near ξ ?

(f) Put $f(x) = x^{1/3}$ on $(-\infty, \infty)$ and try Newton's method. What happens?

(a) Note that the tangent line of the graph of f passing through $(x_n, f(x_n))$ is of the form

$$y - f(x_n) = f'(x_n) \left(x - x_n \right)$$

Chapter 5 Selected Exercises (Rudin)

Thus $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ is the intersection of the tangent line and the *x*-axis.

(b) We first show that $x_{n+1} \le x_n$. Since $f'' \ge 0$, the function f' is increasing. If $x_n = \xi$ for some n, then clearly $x_m = \xi$ for all $m \ge n$ and it is nothing to prove. If $x_n > \xi$, then by the mean value theorem there exists $c_n \in (\xi, x_n)$ such that

$$f(x_n) = f(x_n) - f(\xi) = f'(c_n) (x_n - \xi) \le f'(x_n) (x_n - \xi)$$

Since $f' \ge \delta > 0$, this reveals that $\frac{f(x_n)}{f'(x_n)} \le x_n - \xi$, and that

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \ge x_n - (x_n - \xi) = \xi$$

Note that $x_1 > \xi$, so by induction, we conclude that $x_n \ge \xi$ for all n, and then $f(x_n) \ge 0$ for all n (since f' > 0 implies f is increasing). It follows that $\frac{f(x_n)}{f'(x_n)} \ge 0$, or equivalently $x_{n+1} \le x_n$ for all n.

We next show that $\lim_{n\to\infty} x_n = \xi$. Since $\{x_n\}$ is monotonically decreasing with a lower bound ξ , $\lim_{n\to\infty} x_n = x$ for some $x \ge \xi$. But then $x = x - \frac{f(x)}{f'(x)}$, implying f(x) = 0, so by the uniqueness, $x = \xi$.

(c) By Taylor's theorem, there exists $t_n \in (\xi, x_n)$ such that

$$f(\xi) = f(x_n) + f'(x_n) \left(\xi - x_n\right) + \frac{f''(t_n)}{2} \left(\xi - x_n\right)^2$$

Since $f(\xi) = 0$, we have

$$\begin{aligned} x_{n+1} - \xi &= x_n - \xi - \frac{f(x_n)}{f'(x_n)} \\ &= x_n - \xi + \frac{1}{f'(x_n)} \left[f'(x_n) \left(\xi - x_n \right) + \frac{f''(t_n)}{2} \left(\xi - x_n \right)^2 \right] \\ &= \frac{f''(t_n)}{2f'(x_n)} \left(x_n - \xi \right)^2 \end{aligned}$$

(d) By part (c), we have

$$x_{n+1} - \xi \le A (x_n - \xi)^2$$

$$\le A \cdot A^2 (x_{n-1} - \xi)^4$$

$$\vdots$$

$$\le A \cdot A^2 \cdots A^{2^{n-1}} (x_1 - \xi)^{2^n}$$

$$= \frac{1}{A} [A (x_1 - \xi)]^{2^n}$$

Chapter 5 Selected Exercises (Rudin)

(e) Since g(x) = x if and only if f(x) = 0, the result then follows. Next, compute

$$g'(x) = 1 - \frac{[f'(x)]^2 - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}$$

It follows that g(x) tends to 0 as x near ξ .

(f) Given $x_n \in (-\infty, \infty)$ with $x_n \neq 0$, then $f'(x_n) = \frac{1}{3} x_n^{-\frac{2}{3}}$. So

$$x_{n+1} = x_n - \frac{x_n^{\frac{1}{3}}}{\frac{1}{3}x_n^{-\frac{2}{3}}} = -2x_n$$

and we see that $\{x_n\}$ oscillates and diverges.

26. Suppose *f* is differentiable on [a, b], f(a) = 0, and there is a real number *A* such that $|f'(x)| \le A |f(x)|$ on [a, b]. Prove that f(x) = 0 for all $x \in [a, b]$. *Hint:* Fix $x_0 \in [a, b]$, let

$$M_0 = \sup |f(x)|, \quad M_1 = \sup |f'(x)|$$

for $a \leq x \leq x_0$. For any such x,

$$|f(x)| \le M_1(x_0 - a) \le A(x_0 - a)M_0$$

Hence $M_0 = 0$ if $A(x_0 - a) < 1$. That is, f = 0 on [a, b]. Proceed.

Following the hint, choose some $x_0 \in (a, b]$ such that $A(x_0 - a) < 1$. If $M_0 = 0$, then clearly f = 0, and we can proceed. If $M_0 > 0$, note that

$$\left|f'(x)\right| \le A \left|f(x)\right| \le AM_0$$

for $x \in [a, b]$, so $M_1 \leq AM_0$. Now, denote $\delta = 1 - A(x_0 - a)$, then for $x \in [a, x_0]$,

$$|f(x)| = |f'(c)| (x - a) \le M_1(x_0 - a) \le A(x_0 - a)M_0 = M_0 - \delta M_0$$

where $c \in (a, x)$ exists because of the mean value theorem. It follows that $M_0 - \delta M_0$ is a new upper bound of |f(x)| for $x \in [a, x_0]$, contradicting the definition of M_0 . So $M_0 > 0$ is impossible, and we conclude that f = 0 on $[a, x_0]$. Next, choose $x_k = (k+1)x_0 - ka$ for $k = 0, 1, 2, \ldots, n-1$, where $n \ge 1$ satisfying $x_n = b$ and $x_n - x_{n-1} \le x_0 - a$. By using the same argument, f = 0 on $[x_{k-1}, x_k]$, for $k = 1, 2, \ldots, n$. Hence f = 0 on [a, b].

Chapter 5 Selected Exercises (Rudin)

27. Let ϕ be a real function defined on a rectangle *R* in the plane, given by $a \le x \le b$, $\alpha \le y \le \beta$. A *solution* of the initial-value problem

$$y' = \phi(x, y), \quad y(a) = c \quad (\alpha \le c \le \beta)$$

is, by definition, a differentiable function f on [a, b] such that f(a) = c, $\alpha \leq f(x) \leq \beta$, and

$$f'(x) = \phi(x, f(x)) \quad (a \le x \le b)$$

Prove that such a problem has at most one solution if there is a constant A such that

$$|\phi(x, y_2) - \phi(x, y_1)| \le A |y_2 - y_1|$$

whenever $(x, y_1) \in R$ and $(x, y_2) \in R$.

Hint: Apply Exercise 26 to the difference of two solutions. Note that this uniqueness theorem does not hold for the initial-value problem

$$y' = y^{1/2}, \quad y(0) = 0$$

which has two solutions: f(x) = 0 and $f(x) = x^2/4$. Find all other solutions.

(i) Let f_1 and f_2 be two solutions of the initial-value problem, define the difference function $f = f_2 - f_1$ on [a, b]. It suffices to show that f = 0 on [a, b]. Observe that $f(a) = f_2(a) - f_1(a) = c - c = 0$, and that

$$|f'(x)| = |f'_2(x) - f'_1(x)|$$

= $|\phi(x, f_2(x)) - \phi(x, f_1(x))|$
 $\leq A |f_2(x) - f_1(x)|$
= $A |f(x)|$

for all $x \in [a, b]$. Thus by Exercise 26, f = 0 on [a, b]. (ii) It is easy to check that f(x) = 0 and $f(x) = \frac{x^2}{4}$ are solutions of the given initial-value problem. To find the others, observe that if f is a *nonzero* solution, then $y' = y^{\frac{1}{2}}$ implies $f'(x) = [f(x)]^{\frac{1}{2}}$. Differentiate it we get

$$f''(x) = \frac{1}{2} [f(x)]^{-\frac{1}{2}} f'(x) = \frac{1}{2} [f(x)]^{-\frac{1}{2}} [f(x)]^{\frac{1}{2}} = \frac{1}{2}$$

So $f'(x) = \frac{x}{2} + c$ for some constant c, and then $f(x) = \left(\frac{x}{2} + c\right)^2$. Since y(0) = 0 implies f(0) = 0, we get c = 0. Hence $f(x) = \frac{x^2}{4}$.

28. Formulate and prove an analogous uniqueness theorem for systems of differential equations of the form

 $y'_{j} = \phi_{j}(x, y_{1}, \dots, y_{k}), \quad y_{j}(a) = c_{j}, \quad (j = 1, \dots, k)$

Note that this can be rewritten in the form

$$\mathbf{y}' = \Phi(x, \mathbf{y}), \quad \mathbf{y}(a) = \mathbf{c}$$

where $\mathbf{y} = (y_1, \dots, y_k)$ ranges over a *k*-cell, Φ is the mapping of a (k+1)-cell into the Euclidean *k*-space whose components are the functions ϕ_1, \dots, ϕ_k , and **c** is the vector (c_1, \dots, c_k) . Use Exercise 26, for vector-valued functions.

Statement: [i]Let Φ be a vector-valued mapping of a (k+1)-cell $C = [a, b] \times I$ into R^k . Suppose there exists a constant A such that

$$\left|\Phi(x, \mathbf{y}_2) - \Phi(x, \mathbf{y}_1)\right| \le A \left|\mathbf{y}_2 - \mathbf{y}_1\right|$$

whenever $(x, y_1) \in C$ and $(x, y_2) \in C$. Then the initial-value problem

$$\mathbf{y}' = \Phi(x, \mathbf{y}), \quad \mathbf{y}(a) = \mathbf{c} \quad (\mathbf{c} \in I)$$

has at most one solution.[/i]

To show this, let \mathbf{f}_1 and \mathbf{f}_2 be two solution of the given initial-value problem, define $\mathbf{f} = \mathbf{f}_2 - \mathbf{f}_1$ on [a, b]. It suffices to show that $\mathbf{f} = \mathbf{0}$ on [a, b]. Observe that $\mathbf{f}(a) = \mathbf{f}_2(a) - \mathbf{f}_1(a) = \mathbf{c} - \mathbf{c} = \mathbf{0}$, and that

$$\begin{aligned} \left| \mathbf{f}'(x) \right| &= \left| \mathbf{f}'_2(x) - \mathbf{f}'_1(x) \right| \\ &= \left| \Phi(x, \mathbf{f}_2(x)) - \Phi(x, \mathbf{f}_1(x)) \right| \\ &\leq A \left| \mathbf{f}_2(x) - \mathbf{f}_1(x) \right| \\ &= A \left| \mathbf{f}(x) \right| \end{aligned}$$

for all $x \in [a, b]$. Thus by Exercise 26 for vector-valued functions, $\mathbf{f} = \mathbf{0}$ on [a, b].

29. Specialize Exercise 28 by considering the system

$$y'_{j} = y_{j+1}$$
 $(j = 1, ..., k - 1)$
 $y'_{k} = f(x) - \sum_{j=1}^{k} g_{j}(x)y_{j}$

where f, g_1, \ldots, g_k are continuous real functions on [a, b], and derive a uniqueness theorem for solutions of the equation

$$y^{(k)} + g_k(x)y^{(k-1)} + \dots + g_2(x)y' + g_1(x)y = f(x)$$

subject to initial conditions

$$y(a) = c_1, \quad y'(a) = c_2, \quad \dots, \quad y^{(k-1)}(a) = c_k$$

Chapter 5 Selected Exercises (Rudin)

Put $\Phi(x, y_1, y_2, \dots, y_k) = (y_2, y_3, \dots, y_k, f(x) - \sum_{j=1}^k g_j(x)y_j)$ and $\mathbf{c} = (c_1, c_2, \dots, c_k)$, then the given system coincides with the initial-value problem

$$\mathbf{y}' = \Phi(x, \mathbf{y}), \quad \mathbf{y}(a) = \mathbf{c}$$

Observe that for $y_1 = (y_{11}, y_{21}, \dots, y_{k1})$ and $y_2 = (y_{12}, y_{22}, \dots, y_{k2})$,

$$|\Phi(x,\mathbf{y}_2) - \Phi(x,\mathbf{y}_1)|^2 = \sum_{i=2}^k (y_{i2} - y_{i1})^2 + \left[\sum_{j=1}^k g_j(x)(y_{j2} - y_{j1})\right]^2$$

Denote $M = \sup\{|g_j(x)| : x \in [a, b], 1 \le j \le k\}$, then

$$\begin{aligned} |\Phi(x,\mathbf{y}_2) - \Phi(x,\mathbf{y}_1)|^2 &\leq \sum_{i=2}^k (y_{i2} - y_{i1})^2 + M^2 \left[\sum_{j=1}^k (y_{j2} - y_{j1}) \right]^2 \\ &\leq \sum_{i=2}^k (y_{i2} - y_{i1})^2 + kM^2 \sum_{j=1}^k (y_{j2} - y_{j1})^2 \\ &\leq (1 + kM^2) \sum_{j=1}^k (y_{j2} - y_{j1})^2 \\ &= (1 + kM^2) \left| \mathbf{y}_2 - \mathbf{y}_1 \right|^2 \end{aligned}$$

Hence the uniqueness of the solution follows.

AoPS Online 🔯 AoPS Academy 🗿 AoPS 🕬