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W. Rudin, Principles of Mathematical Analysis, 3rd Edition
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1. Let f be defined for all real =, and suppose that
(@) = f()] < (z —y)?

for all z and y. Prove that f is constant.

Starting at f(0), we show that f(z) = f(0) for all z € R'. Consider the case = > 0, and for
n=12...,let{zg, x1,29,...,2,} be a partition of the interval [0, z] with 9 = 0, z,, = z, and
Tjtr1 — Tj = % forj S {0,1,2,...,71,— 1}. Then

where the third line of the above inequality follows by assumption. Since “jl—z — 0asn — oo,
we conclude that |f(z) — f(0)| = 0 or f(z) = f(0). The other case = < 0 is in a similar way.
Hence f is constant.

2. Suppose f'(x) > 0in (a,b). Prove that f is strictly increasing in (a,b), and let g be its inverse
function. Prove that g is differentiable, and that
1
"(f(z)) = a<x<b

(i) By the mean value theorem (Theorem 5.10), for =,y € (a,b) with z < v,

fly) = flx)=f'(c)(y—x) >0
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for some ¢ € (z,y). So f is strictly increasing in (a, b).
(i) Letg : f(a,b) — (a,b) be the inverse function of f,i.e., g(f(z)) = x forall z € (a,b). We now
show that

) — Tim 9 —9)
gy) = lim =—— =

existsforally € f(a,b). Puty = f(z)and z = f(¢t),wherex,t € (a,b),then since f is continuous
(by Theorem 5.2), so is g (by Theorem 4.17), and z — y implies ¢t — x. It follows that

i 93 —9@) _ . 9(f (1) — 9(f(2))
z—y z—y t—x f(t) — f(LU)
= lim b
= f(t) — f(z)
lim 1
toa f(t) — fla)
t—x
B 1
ORI
t—zx t—x
__1
- f(x)

Since f’ > 0, we see that ¢/(y) is defined for all y € f(a,b). Hence g is differentiable. It is also
clear that ¢/(f(z)) = 5 forall = € (a, ).

3. Suppose g is areal function on R!, with bounded derivative (say |¢'| < M). Fixe > 0, and define
f(x) = x +eg(x). Prove that f is one-to-one if ¢ is small enough. (A set of admissible value of
e can be determined which depends only on M)

If 0 < e < 1, then ¢’ > —M implies
f(z)=1+¢eg(z) >1—eM >0

Thus by Exercise 2, f is strictly increasing, and hence f is one-to-one.

4. If
C Ch— C
Cot+ 2t -4 2ty 2=
2 n n+1
where Cy, ..., C, are real constants, prove that the equation

Co+Ciz+-+Ch1z" 14+ Cra"=0
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has at least one real root between 0 and 1.

Let f(z) = Cox + Gta? + -+ + Ena"*1 then clearly f is a differentiable real function (since

Co, C1, ..., C, are real constants). Moreover, we have f(0) = 0 and
Cl Cn—l C’I’L
1) = 4. =
f(1) Co+2+ +n+n+1 0
!3y the mean value theorem, there exists a point zy € (0, 1) such that f'(x¢) = f(lf:{;(o) =0,
ie.,
Co+ Crag+ -+ Cpgzy ™+ Cpaf =0
5. Suppose f is defined and differentiable for every 2 > 0, and f'(z) — 0 as z — +oo. Put

g(x) = f(z+1) — f(x). Prove that g(z) — 0 as z — +oc.

By the mean value theorem, for « > 0, let ¢(x) be a real number such that ¢(z) € (z,2 + 1) and
f'(c(z)) = f(x+1) — f(x). Then ¢(z) — +o00 as z — +oo, which implies

g(x) = f'(e(x)) =0

6. Suppose
(a) f is continuous for z > 0,
(b) /() exists for z > 0,

(c) £(0) =0,
(d) f” is monotonically increasing.
Put
o) =12 @)

and prove that g is monotonically increasing.

Since ¢'(z) = W where z > 0, by Theorem 5.11(a), it suffices to show that
af'(z) — flz) =20
for all z > 0. Since conditions (a), (b), and (c) hold, by the mean value theorem,
f@) = f(z) = f(0) = f(c)(z = 0) = zf(c)

for some ¢ € (0,z). Since ¢ < x here, by condition (d), zf/(¢c) < zf'(x). So we conclude that

f(z) < af'(z).
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7. Suppose f'(z), ¢'(x) exist, ¢'(z) # 0, and f(z) = g(x) = 0. Prove that

(This holds also for complex functions.)

We have
- 1@) 0~ T
lim @ — lim t—x _ tow t—ax _ f’(w)
t—x g(t) t—x g(t) — g(:l?) lim g(t) — g(x) g’(w)
t—x t—x t—x

where the first equality shown above follows by f(z) = g(z) = 0.

8. Suppose [’ is continuous on [a, b] and £ > 0. Prove that there exists § > 0 such that
f)—flx)
P fw)| <

whenever 0 < |t —z| < §,a < x < b,a <t < b. (This could be expressed by saying that f
is uniformly differentiable on [a, b] if f’ is continuous on [a, b].) Does this hold for vector-valued
functions too?

(i) By the mean-valued theorem, there exists ¢(t) between x and ¢ such that %ﬂ’:(“) = f'(e(t)).
Since f’ is continuous on [a, b], and since ¢(t) — = as t — x (by the squeeze theorem (https:
//en.wikipedia.org/wiki/Squeeze_theorem)), we have

f@t) = f(z)

t—x

= f(e(t)) = f'(z)

as t — x. This completes the proof.
(ii) Yes. Provided that each component of a given vector-valued function has continuous deriva-
tive on an interval.

9. Let f be a continuous real function on R!, of which it is known that f’(z) exists for all = # 0
and that f’(z) — 3 as « — 0. Does it follow that f/(0) exists?

Yes. Note that f/(z) — 3 as z — 0, so by L'Hospital's rule,

7(0) = tim L =IO _ iy priy =3

z—0 xT z—0
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10.  Suppose f and g are complex differentiable functions on (0,1), f(z) — 0, g(z) — 0, f/'(z) — A,
J'(r) — B as x — 0, where A and B are complex numbers, B # 0. Prove that

flz) A

250 g(r) B
Compare with Example 5.18. Hint:

%Z{@_A}'Qé)hél'gé)

Apply Theorem 5.13 to the real and imaginary parts of f(z)/z and g(z)/x.

Following the hint, write f = f1+if2, where f; and f» are real functionson (0,1). Then fi(z) — 0
and f{(z) — Re(A) as z — 0, and by L'Hospital’s rule,

lim Re [M] = lim hi@) _ ili% fi(z) = Re(A)

z—0 xT z—0 X

Similarly we have Im [@] — Im(A), Re [@} — Re(B), and Im

o
t £ =ty (e [£2] i1 | 2]
. (@

= lim Re [f(:v

}—>Im B)asz — 0.So

8

\_/

x—0

7 lim Im [f }

x z—0
= Re(A4) +iIm(A)
=A

and similarly lim,_,o £ 9@) — B or the limit of its reciprocal

I T y 1 1 1

1m —— = 11IIlm = e

a—0g(x) 220 g(x) lim g(x) B
x x—0 X

exists, since B # 0. The result will therefore follow.

11.  Suppose f is defined in a neighborhood of z, and suppose f”(x) exists. Show that
L @)+ f@ = h) — 21 (@)

h—0 h?

= f"(z)

Show by an example that the limit may exist even f”(z) does not.
Hint: Use Theorem 5.13.
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(i) By LHospital's rule,
i T@H0) + @ =) = 2f(@)

h—0 h?

f'@+h)— fi(x—h)

= Jy 2h

1. [fath) - f@)  f@) - fa—h)

_5%136[ h * h ]
L[ flath)—f@) @)= f@—h

L e e

=2 /'@ + (@)

— (@)

(i) For example, let
z+1 <0
flzy=<¢ 0 x=0
z—1 x>0

12.  If f(z) = |z|*, compute f'(x), f”(x) for all real z, and show that £(3)(0) does not exist.

() Forz >0, f'(z) = (2%)" = 322 Forz < 0, f'(z) = (—2®)" = —322. Finally,
1/(0) = lim @ = lim sgn(h)h? = 0
h—0 h h—0
where
1 h>0

Sgn(h):{ -1 h<0

(i) Forz > 0, f"(z) = (322)" = 6z. Forz < 0, f"(z) = (—322)" = —6z. Finally, use part (i),

w — lim sgn(h)3h?

h—0 h h—0 h = sen(h)3 flllg%) h=0

(iii) To show that f©®)(0) does not exist, just write

F7(h) ; £7(0) _ f//}(bh) _ Sgn(:)ﬁh — 6sen(h)

The result then follows.
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13.  Suppose a and z are real numbers, ¢ > 0, and f is defined on [—1, 1] by

| atsin (Jz|7¢) (ifz #0)
f(x)_{o (ifz = 0)

Prove the following statements:

(a) f is continuous if and only if a > 0.

(b) 1/(0) exists if and only if a > 1.

(c) f"isboundedifand onlyifa > 1 +c.

(d) f"is continuous if and only if a > 1 + c.
(e) (0) exists if and only if a > 2 + c.

(f) f” is bounded if and only if a > 2 + 2c.
(g) f” is continuous if and only if a > 2 + 2c.

(a) Itis clear that f is continuous at any nonzero point x, so we only consider the point z = 0.
If @ > 0, then

|f(z)] = |z%sin (Jz| )| < 2% =0 asz—0
By squeezing, f(z) — 0 as x — 0, and hence f is continuous at 0. Conversely, if a < 0, let

1 . .
zn = (2nm+ %) ©forn=1,2,.... Thenz, — 0asn — oo, but =2 > 0 implies

f(zy) = <2n7r + g)‘z >1 foralln

This shows that lim,,_, f(z,) # 0 = f(0), and hence f is not continuous at 0.

(b)Ifa>1o0ra—1>0,then

2% sin (|z|~)

T

'f(w)—f(o)’

g\x“*\—m asxz — 0

. . _1
By squeezing, f(0) = 0. Conversely,ifa < lora—1<0,letz, = 2nr+ %) < andy, =
(2nm)~< forn =1,2,.... Then z, — 0 and y,, — 0 as n — oo, but —2=1 > 0 implies

%;f(()) = <2mr+g)_a;1 >1 foralln

Also, we have W = 0 for all n. This gives

f(xn) B f(O)

Tn

lim
n—oo

7&0: lim f(yn)_f(o)

n—oo yTL
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and hence f’(0) does not exist.

(9

14. Let f be a differentiable real function defined on (a,b). Prove that f is convex if and only if f/
is monotonically increasing. Assume next that f”(x) exists for every x € (a,b), and prove that
fis convex if and only if f”(z) > 0 for all z € (a,b).

(i) If fis convex. For z,y,t € (a,b) withz < ¢t < y,and let ¢ = % By Exercise 4.23,
f(t) = f(=) fly) — f(t)

c>————~ and c<
t—x y—t

Since f is differentiable, we have ¢ > f’(z) and ¢ < f'(y) ast — x and t — y, respectively.
Hence f/(z) < f/(y). Conversely, if f’is monotonically increasing, given z,y € (a,b) withz < y,
and A € (0,1). Put¢t = Az + (1 — \)y, then

t—x=(1-XN(y—=x) and y—t=\y—x)
Since f’ is monotonically increasing, applying the mean value theorem,

f(t>_f(x)_ ! / _f(y)_f(t)
?—f(Q)Sf(@)—T

for some ¢; € (z,t) and ¢z € (t,y). It follows that

A = F@)] <A =N [fly) = F@)]

or

f) < Af(@) + (1 =N f(y)

(i) We first show that f” is monotonically increasing if and only if f”(x) > O0forallz € (a,b). The
sufficiency part is the result of Theorem 5.11(a). To show the necessity part, given z € (a,b),

observe that the fraction w is always nonnegative, for all ¢ € (a,b) with ¢ # z, since f’
is monotonically increasing. Thus by definition,

o £ = f'(@)

t—x t—2x

>0

f'(@) =

© 2019 AoPS Incorporated 8



AoPS Community Chapter 5 Selected Exercises (Rudin)

Hence, f is convexif and only if f”is monotonically increasing [by part (i)], if and only if f”(z) >
0 for all z € (a, ).

15. Suppose a € R!, f is a twice-differentiable real function on (a, o0), and My, M;, M- are the
least upper bounds of |f(z)|, | f'(z)|, | f”(x)]|, respectively, on (a, o). Prove that

M} < 4MoM,

Hint: If h > 0, Taylor's theorem shows that

1

f(x) = 5 [f @+ 2h) = f(2)] = hf()

for some ¢ € (z,z + 2h). Hence
M,
|f'(z)| < hMa + TO

To show that M? = 4M, M, can actually happen, take a = —1, define

222 -1 (-1<2<0)
fl@)=9 22—
22 +1

and show that My =1, M; =4, M,y = 4.
Does M? < 4MyMs, hold for vector-valued functions too?

(0<z<o0)

(i) First, note that MyM- be of the form 0 - cc is exceptional. Now we consider the following
four cases.

Case 1: My = oo or My = oco. The result is trivial.

Case 2: My = 0. Then f(z) = 0, and then f'(z) = f”(z) = 0 for all € (a,0). It follows that
M = M5 = 0, and the result is also trivial.

Case 3: 0 < My < oo and My = 0. Then f”(z) = 0, and then f'(z) = cand f(z) = cx + d for
some constants ¢,d € R, for all z € (a, ). Since M, is finite, we need ¢ = 0 and then M; = 0.
The result therefore follows.

Case 4:0 < My < oo and 0 < M, < oo. Following the hint, use Taylor’s theorem (Theorem
5.15), for « € (a,00) and h > 0 there exists £ € (z,x + 2h) such that

flx+2h) = f(x)+ f'(z) - 2h + @ - (2h)?
= f(z)+ f'(x) - 2h + f"(€) - 207
Thus

/@) = o 1f(e +28) = f()] — hf"(©
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and hence

@) < hdty + 20

By assumption, we may put h = , /%21 and the inequality becomes

|f'(z)| < 2¢/ Mo M,

implying M; < 2¢/MyM; or M < 4MyMs.
(i) By some calculation,

fl(x) = 4x
(-l<z<0) (@)
f'(x) =4
4x
/ —
f(z) (22 +1)2
(0 <z < o0) 5
f”(x) _ _4(33: — 1)
(CL’Q + 1)3
To find f/(0) and f”(0), calculate
ﬂ;l +1
g SO =fO) 2 2
t—0+ t t—0+ t t—0+ t2 + 1
lim M: lim M: lim 2t =0
t—0— t t—0— t t—0—
Then f/(0) = 0. Next,
4t
/ _ g 2 2
i L OO @24
t—0+ t t—0+ t t—0+ (12 +1)2
! gt
lim F't) - () = lim ﬁ:4
t—0— t t—0— ¢

Then f”(0) = 4. Now, -1 < f(z) < 1forz € (—1,00), and lim,_, f(z) = 1, are both trivial.
Hence M, = 1. Also, since f”(x) = 4 forz € (—1,0], and lim, o1 f”(z) = 4, we see that f is
twice-differentiable on (—1, 00). To show that | f”(z)| < 4 for all z > 0, observe that

307 —1 <32 +1 <20 + 32 + 322 + 1= (2% +1)°

2 2
Sl (2§+_1)13 < 1forz > 0.So

($2+1)3

and that

32— 1

‘f”(fﬁ)‘ =4 m <
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for z > 0, and hence M, = 4. Finally, since 0 < f’(z) < 4 forz € (—1,0], and
20 <14 2% < 14222 + 2t = (2% 4+ 1)2

for x > 0. We see that

/()| =

4x 2x
G| = <2<

for z > 0, and hence M; = 4 (since lim;_,(_1); f'(z) = —4).

(iii) Yes. In R¥, let f(z) = (fi(z),..., fx(z)) where each f; (1 < j < k) is a twice-differentiable
real function. Note that M M; be of the form 0- oo is exceptional, and we consider the following
four cases. (The first three cases are simple extensions of & = 1.)

Case 1: My = oo or My = oo. The result is trivial.

Case 2: My = 0. Then f;(z) = 0, and then fi(z) = f/(x) = 0 for all z € (a,o0) and for all 5. It
follows that M; = M, = 0, and the result is also trivial.

Case 3:0 < My < oo and M = 0. Then f/(z) = 0, and then f}(z) = ¢; and f;(z) = c;x + d; for
some constants ¢;,d; € R, forall z € (a,c0) and for all ;. Since M is finite, we need ¢; = 0 for
each j, and then M; = 0. The result therefore follows.

Case 4:0 < My < oo and 0 < My < oo. If M; = 0 then we are done. If M; > 0, let p € R! be
such that 0 < p < M, and let zy € (a, ) be such that |f'(z¢)| > p. Putu = ‘ggg;‘ Consider
the real-valued function g(z) = u - f(x) for x € (a, ), and note that g is twice-differentiable.
Let Ny, N1, N2 be the least upper bounds of |g(z)|, |4/ (x)], |¢" ()|, respectively. Since |u| = 1,
by Schwarz inequality [Theorem 1.37(d)],

lg()| < ul |f(z)| = [£(z)], |¢" ()] < [u] |£"(z)| = |£"(z)]
forall z € (a,0). So that Ny < My and N, < Ms. Also, since
N1 > g (x0) =u-f'(zg) = ‘f’(l‘o)’ >p

and since N; < 4Ny N, [by part (i)], we have p < 4MyM,. Since p is arbitrarily chosen such that
0 < p < My, we conclude that M; < 4MyMs,.

16.  Suppose f is twice-differentiable on (0, c0), f” is bounded on (0, ), and f(z) — 0 as x — occ.
Prove that f/(z) — 0 as = — oc.
Hint: Let a — oo in Exercise 15.

Let M > 0 be such that |f”(x)| < M for z € (0,00). Given a € (0, 00), let My(a), M;(a), Ma(a)
be the least upper bounds of |f(z)|, | f'(x)], |f"(z)|, respectively, for x € (a,o0). Then clearly
Ms(a) < M for all a. Since f(z) — 0 as z — oo, for every £ > 0 there exists ay € (0,00) such
that |f(z)| < e for all z € (ag, 00). It follows that Mj(ap) < e and that (by Exercise 15)

M3 (ap) < 4Mo(ao)Ma(ag) < 4Me

e, |f(x)] <2vMeforall z € (ap,0). Hence f/(x) — 0 as = — oo.
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17.  Suppose f is a real, three times differentiable function on [—1, 1], such that
f(=1)=0, f(0)=0, f(1)=1, f(0)=0

Prove that £ (z) > 3 for some z € (-1, 1).

Note that equality holds for J (23 + 22).

Hint: Use Theorem 5.15, with « = 0 and § = =+1, to show that there exist s € (0,1) and ¢t €
(—1,0) such that

FO(s) + 19 (1) = 6

Following the hint, use Taylor's theorem (Theorem 5.15), there exists s € (0,1) and t € (—1,0)
such that
L) 9 o) f96)

2 6 2+6

L) ) 10 P
2 6 2 6

1= f(1) = f(0) + £(0)

0= f(~1) = f(0) - '(0)

Subtract them we get
FP )+ 1P (1) =6

It follows that either f®)(s) > 3 or f©)(¢) > 3, which completes the proof.

18.  Suppose f is areal function on [a, b], n is a positive integer, and f("~1) exists for every ¢ € [a, b).
Let o, 3, and P be as in Taylor's theorem (5.15). Define

fort € [a,b], t # 5, differentiate

ft) = f(B) = (t = B)Q(Y)
n — 1 times at t = o, and derive the following version of Taylor's theorem:

Q")

f(ﬂ)=P(5)+m

(6 —a)"

By induction, we easily conclude that

FB (@) = Q¥ V(a) — (8 — )Q™ ()

© 2019 AoPS Incorporated 12
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and then
P () Q¥ V(a) QM (a)
g ()= (k—1)! (8 =) = == (B!
fork=1,2,...,n— 1. It follows that
n—1 (k) a
— fe)+ L (5 g
k=1
(n=1) (o,
— fa)+ Q)3 - )~ T (5 - ay
n—1) a
— J(@) + (B - f(o >]—Q( G -ar
Q" V(a) n
f(IB)_ (n_1)| ( _a)

or £(8) = P(B) + Lpi2 (8 — o)™,

19.  Suppose f is defined in (—1,1) and f(0) exists. Suppose —1 < «,, < B, < 1, ap, — 0, and
Bn — 0 as n — co. Define the difference quotients

f(Bn) — flan)

D, =
Brn — an

Prove the following statements:

(@) If a,, < 0 < By, then lim D,, = f/(0).

(b) If 0 < o, < By @and {B,,/(Bn — )} is bounded, then lim D,, = f/(0).

(c) If f"is continuous in (—1, 1), then lim D,, = f/(0).

Give an example in which f is differentiable in (—1,1) (but f’ is not continuous at 0) and in
which a,, 3, tend to 0 in such a way that lim D,, exists but is different from f/(0).

~forn =1,2,..., thenclearly 0 < A\, < 1 (since a;, < 0 < f3,). Now, we

(a) Denote \
can write

”_ﬂ

f(Bn) = £(0) + f(0) = flom)
Bn — an
_ ﬁn . f(/Bn) B f(o) + —Qn . f(O) — f(an)
/Bn — Qnp /Bn /Bn — Qp —Qp
:>\n' f(ﬁn)_f(o) _}_(1_)\”)' f(an)_f(o)

ﬁn Qp

D, =
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Since f’(0) exists, by definition, for ¢ > 0 there exists a positive integer N such that n > N

implies
=10 ) <, ana |10y .,
Son > N implies
D, = 70 = o [LELZHD )] 4 1 ay [0 21O )]
< [TEDZI0) o) 1= ) (L2100 )

<Ae+ (1 =Xy)e

=&

Hence lim,,_, D,, = f/(0).

(b) Let \,, be the same notation as in part (a), then we know that )\, > 0 for each n. Since
{Bn/(Bn — )} is bounded, there exists M > 0 such that A, < M for each n. Now, we can
write

Lf(Bn) = f(0)] = [f () — f(0)]
Bn — Qnp
_ Bn f(ﬂn)_f(o)_i_ —Qn .f(ozn)—f(O)
/Bn — Qp ﬁn Bn — Op (077}

Bn Qn

D, =

Then if we let ¢ and NV be the same meaning as in part (a), it follows that n > N implies

D, = 710 = o [PELZIO - ] gy [ =IO i)
< f(Bn)IB; f(O) o f’(O)‘ + (1 +>\n) f(an)a; f(O) - f’(O)‘
<Met+(1+A)e
<(1+2M)e

Hence lim,,_,», D,, = f/(0).

(c) By the mean value theorem, for each n there exists v,, € (a,, 8,,) such that

Dn = f,(’yn)

By squeezing, we see that v, — 0 as n — co. Since f’ is continuous, D,, = f'(y,) — f/(0) as
n — 0.

© 2019 AoPS Incorporated 14



AoPS Community Chapter 5 Selected Exercises (Rudin)

Inspired from Exercise 13, we give an example as below. Let f : (—1,1) — R! be defined by

0 z=0
J@ = 2% sin (%) otherwise
Then f'(z) = 2z sin (1) — cos (2) for z # 0, and
70) = tim L =IO gy <l> _ 0

x—0 x x—0 T

i.e.,such fis differentiable on (—1, 1) but f’is not continuous at 0. Moreover, let o, = (2n7 + g)‘l
and 3, = (27171')_1 forn=1,2,....Then0 < a,, < B, < 1,, — 0,and 3, — 0 as n — co. But

—2
~ (207 + %)
D, = 2
(2nm)”" — (2n7r+ 5)
_ -1
= 2
<2n7r + E) (2nm) " — (2n7r + E)
2 2
_ -1
_<2 ) (1) - (2o D)
nr+ 5 ™ T+ 5
_ —4n
- T
2 r
nw+ 5

which follows that lim, o D,, = —2 # 0 = f/(0).

20. Formulate and prove an inequality which follows form Taylor's theorem and which remains
valid for vector-valued functions.

(i) The statement in the real-valued case: [i]Suppose f is a real function on [a, b], n is a positive
integer, (1) is continuous on [a, b], f(™)(t) exists for every t € (a.b). Let

n—1 (k)
Piy=S"1 k'(“) (t —a)*
k=0 ’
then there exists = € (a, b) such that[/i]
(n)
70— Py < |2 o ayr
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The proof of the assertion directly follows from the Taylor’ theorem.
(i) The statement in the vector-valued case: [i]Suppose f is a mapping on [a, b] into R¥, nis a
positive integer, ("~ 1) is continuous on [a, b], f") () exists for every ¢ € (a.b). Let

_ k
k=0
then there exists x € (a, b) such that[/i]
£ () n
£(0) — PO)| < |[— 2| (- a)

To show it, note that |f(b) — P(b)| = 0 is a trivial case. If |f(b) — P(b)| # 0, define

1
U O =P [£(b) — P(b)]

Then u - f is a real-valued function on [a, b], satisfying all the conditions in the statement of
part (i). Since (u - f)*) = u - f*) fork =0,1,2,...,n, and

k! k!
k=0 k=0

ol g(k)

. fﬁ”@_mﬂ
k=0

=u-P(t

by part (i) we have
u-f(x £ (g
u-g) —u P < |V gy < |EE gy

for some z € (a,b), where the above second inequality follows by the fact |u| = 1, and by the
Schwarz inequality. On the other hand,

u-f(b) —u-P(b) = u- [f(b) — P(b)]

Il
=
—

S
N—
|
w
—
S
-

we then conclude that
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21 Let E be a closed subset of R!. We saw in Exercise 22, Chap. 4, that there is a real continuous
function f on R' whose zero set is E. It is possible, for each closed set E, to find such an f
which is differentiable on R!, or one which is n times differentiable, or even one which has
derivatives of all orders on R'?

22.  Suppose f is areal function on (—co, 00). Call  a fixed point of f if f(z) = x.
(a) If f is differentiable and f/(t) # 1 for every real ¢, prove that f has at most one fixed point.
(b) Show that the function f defined by

ft)=t+1+e)?

has no fixed point, although 0 < f/(¢) < 1 for all real ¢.
(c) However, if there is a constant A < 1 such that |f/(¢)| < A for all real ¢, prove that a fixed
point x of f exists, and that z = lim x,,, where z; is an arbitrary real number and

Tnt+1 = f(xn>

forr =1,2,3,....
(d) Show that the process described in (c) can be visualized by the zig-zag path

(1, 22) = (22, 22) = (x2,23) — (x3,23) = (x3,24) = - -

(a) Suppose there are two fixed points of f, saying x and y. W.l.o.g., let z < y. Since f is
differentiable, by the mean value theorem, there exists a point ¢ € (z,y) such that f(y)— f(z) =
(y —x)f'(t). But since f(x) = x and f(y) = y, we have

y—z=(y—a)f(t)
implying f/(t) = 1.

(b) Note that f(t) = t if and only if (1 +e?)~! = 0, which is impossible. So f has no fixed point.
Next, observe that

et

f/(t)zl—m €(0,1)

since &z € (0,1).

(c) The uniqueness of the fixed point = of f follows by part (a). To show the existence, given
r1 € R! and define

Tnt+1 = f(xn>
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forn =1,2,.... Then by induction and by the mean value theorem,

[Zp1 — @n| = |f(2n) — flzn-1)]
= |f/(cn) (7 — xn—1)|

< A |xn - xn—1|

< A2 |xn—1 - xn—2|

< A" ag — 1

Since 0 < A < 1, forevery e > 0 there exists a positive N such that % |ze — 21| < e. It follows
that for integers m,n withn >m > N + 1,

|Tn — Tm| < |Tmt1 — Tm| + [Tma2 — Tmga] + -+ |20 — To—1]
< (AT AT 4 AT |2 — |

Am—l
< 1-4 |zy — 21|
AN
< 1A |z — 1]
<é€

i.e., {z,} forms a Cauchy sequence in R!, and then lim,,_,. z,, = = for some = € R!. Note that
such z is the desired fixed point of f, since

fo) = g Fon) = Jig oni1 =

(d) The visualization is clear.

23.  The function f defined by

has three fixed points, say «, 3, v, where
2<a< -1, 0<pB<], 1<y<2

For arbitrarily chosen x4, define {x,,} by setting z,,+1 = f(z,).
(@) If z1 < o, prove that z,, - —oo as n — oo.

(b) If a < xy < ~, prove that z,, —+ S asn — oo.

(c) If v < a1, prove that z,, — +oo as n — <.

Thus 3 can be located by this method, but o and v cannot.
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Define g(z) = f(x) — z, then g(a) = g(B) = g(v) = 0 and

We claim that

(M g(z) <0forz < o;

(2) g(z) >0fora<z < g;

B)g(x)<0forg <z <,

(4) g(x) > 0fory < z.

Proof of the claim. We only prove (1) because the others are in a similar way. Since g is a poly-
nomial of degree 3 and g has three zeros «, 3, v, it is impossible that g(x) = 0 whenever z < a.
Now, suppose there exists ¢y < « such that g(z) > 0, then g(—2) < 0 < g(z¢) implies there
exists ¢ between —2 and x, such that g(c) = 0. Since —2 < o and zp < o, we have ¢ < «, which
is impossible to happen. O

To complete the proof, we consider the following five cases.

Case 1: 1 < «. Suppose =, < q, then z,11 = % < ‘133“ = « (since z® monoton-
ically increases). So by mathematical induction, z,, < « for all n. It follows from (1) that
Tp+1 = g9(zn) + xn < x, for each n, i.e, {z,} is monotonically decreasing. Suppose {z,}
is bounded below, then lim,,_,~, z,, = 2’ for some z’ € R!, and

f@) = lm f(n) = lm 2y =2’

i.e,, 7’ is a fixed point of f. Since g(+/) = 0 and 2/ < z; < a, a contradiction occurs (since g

has only three zeros). Hence lim,, ;o 2, = —0c.

. z3+1 o341 z3+1
Case 2: o < x1 < 3. Suppose a < z, < B,thenz, 1 = =5— > = =aand z,41 = 75— <
B+1

=~ = /3 (since z* monotonically increases). So by mathematical induction, a < z,, < 8 for
all n. It follows from (2) that z,,.1 = g(z,,) + z, > =z, for each n, i.e,, {z,,} is monotonically
increasing. Since {z,} is bounded above (by 3), we have lim,, ,,, z, = 2’ for some 2/ € R!,
and
! . . /
f@) = lim f(zn) = lim 2,41 =2
i.e., 2’ is a fixed point of f. Since o < 21 <2’ < 3, ¢g(2') = 0,and g(z) > 0 for all z € («, 3), this
means that 2’ = 3.
Case 3: 21 = . Itis clear that x,, = 3 for all n, implying lim,, . z,, = f.
Case 4: 3 < x1 < ~. Similar to Case 2, the conclusion is lim,, ,,, z,, = 3.
Case 5: v < x1. Similar to Case 1, the conclusion is lim,, s x,, = +00.
In summary, part (a) follows by Case 1; part (b) follows by Case 2, 3, and 4; part (c) follows by
Case 5.

24. The process described in part (c) of Exercise 22 can of course also be applied to functions
that map (0, c0) to (0, c0).
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Fix some a > 1, and put

1

o= (++2). gt 922

Both f and g have /«a as their fixed point in (0, c0). Try to explain, on the basis of properties
of f and g, why the convergence in Exercise 16, Chap. 3, is so much more rapid than it is in
Exercise 17. (Compare f’ and ¢/, draw the zig-zags suggested in Exercise 22.)

25.  Suppose f is twice differentiable on [a, ], f(a) < 0, f(b) >0, f'(z) > 6 > 0,and0 < f"(z) < M
forall z € [a, b]. Let ¢ be the unique point in (a, b) at which f(¢) = 0.
Complete the details in the following outline of Newton’s method for computing &.
(a) Choose z; € (&,b), and define {z,,} by

o =5 0

Interpret this geometrically, in terms of a tangent to the graph of f.
(b) Prove that x,,,1 < z, (c.f. Rudin’s book says z,,.1 < x,, but sometimes "=" may hold. For
example, consider f(z) = cx + d where ¢ > 0, then z,, = ¢ = —d/cforn = 2,3,....) and that

lim z, =
n—oo n 5

(c) Use Taylor's theorem to show that

Tpy1 —§ = %(ivn_&f

for some ¢, € (§,zy).
(d) If A= M/26, deduce that

0% anp— €5 LA -

(Compare with Exercise 16 and 18, Chap. 3.)
(e) Show that Newton’s method amounts to finding a fixed point of the function g defined by

@)
W= P

How does ¢'(x) behave for x near £?
(f) Put f(z) = z'/% on (—o0, 00) and try Newton’s method. What happens?

(a) Note that the tangent line of the graph of f passing through (x,,, f(x,)) is of the form
Yy — f(mn) = f/(xn) (.I - xn)
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Thus z, 11 = 2, — Jﬁ((f;z)) is the intersection of the tangent line and the z-axis.

(b) We first show that z,, 11 < z,. Since f” > 0, the function f’ is increasing. If z,, = £ for some
n, then clearly z,,, = ¢ for all m > n and it is nothing to prove. If z,, > &, then by the mean value
theorem there exists ¢, € (£, z,,) such that

fan) = fzn) = f(&) = f'(en) (wn — &) < f'(an) (20 — §)

Il < 2, — ¢ and that

Tn41 = Tn — f’(%z) Z Tn — (xn - f) = f

Since f’ > § > 0, this reveals that

Note that z; > &, so by induction, we conclude that z,, > ¢ for all n, and then f(x,) > 0 for all
n (since f' > 0 implies f is increasing). It follows that J{/((‘;:)) > 0, or equivalently z,, .1 < x,, for
all n.

We next show that lim,,_,~ x,, = . Since {z,,} is monotonically decreasing with a lower bound
& lim,_yo0 x, = x for some z > £. But thenz = = — ]{,((?), implying f(x) = 0, so by the unique-
ness, r = ¢£.

(c) By Taylor's theorem, there exists t,, € (£, z,,) such that

f// (tn)

F(&) = flan) + F'(wn) (€ = wn) + =57 (€ = w)”
Since f(£) = 0, we have

f— g f(@n)
Tn+1 §=x,—§ f/(xn)

=Ty — ! "(z T M — 2

= = € s S ea) (€ =) + T (€= )
_ f(t) T 62
2f’(33n)( " O

(d) By part (c), we have
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(e) Since g(z) = z if and only if f(z) = 0, the result then follows. Next, compute

, @) - f@) (@) f@) ()
r)=1-— =
o /(@) /(@)

It follows that g(x) tends to 0 as x near .

(f) Given x,, € (—o0, 00) with z,, # 0, then f/(x,,) = %x;% So

and we see that {x,,} oscillates and diverges.

26. Suppose f is differentiable on [a,b], f(a) = 0, and there is a real number A such that |f/(z)| <
A|f(x)| on [a,b]. Prove that f(z) = 0 for all z € [a, b]. Hint: Fix zo € [a, b], let

Mo =sup|f(z)|, M =sup|f'(z)|
fora < < x. For any such z,
|f(z)] < Mi(zo — a) < A(zo — a)Mo

Hence My = 0if A(xp — a) < 1. Thatis, f = 0 on [a, b]. Proceed.

Following the hint, choose some z € (a,b] such that A(zy — a) < 1. If My = 0, then clearly
f =0, and we can proceed. If My > 0, note that

| (2)] < Alf(2)] < AMo
for z € [a,b], so My < AMj. Now, denote § = 1 — A(x¢ — a), then for x € [a, x0),
|f(@)] = |f'(c)] (x = a) < My(zo — a) < A(zg — a)Mo = My — 6 My

where ¢ € (a,x) exists because of the mean value theorem. It follows that My — 6 M is a new
upper bound of | f(z)| for z € [a, 2], contradicting the definition of M,. So M, > 0isimpossible,
and we conclude that f = 0 on [a, o). Next, choose z;, = (k+1)zg—kafork =0,1,2,...,n—1,
where n > 1 satisfying z,, = band z,, — z,,_1 < 29 — a. By using the same argument, f = 0 on
[zk—1,2k), fork =1,2,...,n. Hence f = 0 on [a, b].
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27. Let ¢ be areal function defined on a rectangle R in the plane, givenbya <z <ba <y < f[. A
solution of the initial-value problem

v =9¢@y), yla)=c (a<c<p)

fl@) =d(z, f(z)) (a<z<D)

Prove that such a problem has at most one solution if there is a constant A such that

|p(x,y2) — oz, y1)| < Alya — 1]

whenever (z,y;) € Rand (z,y2) € R.
Hint: Apply Exercise 26 to the difference of two solutions. Note that this uniqueness theorem
does not hold for the initial-value problem

y =y, y(0)=0

which has two solutions: f(z) = 0 and f(z) = 2%/4. Find all other solutions.

(i) Let f; and f> be two solutions of the initial-value problem, define the difference function
f = fo— fi10ona,b]. It suffices to show that f = 0 on [a, b]. Observe that f(a) = fa(a) — fi(a) =
c — c =0, and that

' (@)] = [f5(2) = fi(2)]
= [0z, fo(x)) = ¢(=, fi(2))]
< Alfa(x) = fi(e)]
= Alf(z)|

for all z € [a, b]. Thus by Exercise 26, f = 0 on [a, b].

(ii) It is easy to check that f(z) = 0 and f(z) = % are solutions of the given initial-value
problem. To find the others, observe that if f is a nonzero solution, then 3/ = y% implies f'(x) =
[f(:p)]%. Differentiate it we get

|
—
-
—
8
=
Nl
I

@I @)= 5 @)

N

7'(z) =

So f'(z) = £-+cforsome constant c,and then f(z) = (% + c)2. Since y(0) = 0implies f(0) = 0,
we get ¢ = 0. Hence f(x) = %.

28. Formulate and prove an analogous uniqueness theorem for systems of differential equations
of the form

yg':(ﬁj(q"?yl?"'?yk)? yj(a):Cj7 (]:]‘”k)
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Note that this can be rewritten in the form

yl = (I)(xay)7 Y(a) =cC

wherey = (y1,...,yx) ranges over a k-cell, ® is the mapping of a (k+ 1)-cell into the Euclidean
k-space whose components are the functions ¢, ..., ¢, and c is the vector (¢y,...,¢;). Use
Exercise 26, for vector-valued functions.

Statement: [i]Let ® be a vector-valued mapping of a (k + 1)-cell C = [a, b] x I into R*. Suppose
there exists a constant A such that

[P (2,y2) — ®(z,y1)] < Alys — 1

whenever (z,y1) € C and (z,y2) € C. Then the initial-value problem
y =&(x,y), yla)=c (c€l)

has at most one solution.[/i]

To show this, let f; and f; be two solution of the given initial-value problem, define f = f, — f;
on [a, b]. It suffices to show that f = 0 on [a, b]. Observe that f(a) = fz(a) — fi(a) = c—c =0,
and that

|f'(2)] = [£5(2) — fi(2)]
= [®(x, fy(z)) — O(x, 1 (2))|
< Alfy(z) — fi()|
= Alf(x)]

for all = € [a, b]. Thus by Exercise 26 for vector-valued functions, f = 0 on [a, b].

29.  Specialize Exercise 28 by considering the system

y_;‘:yj-i-l (j:177k_1)
k
ve = f(@) =) _gi(@)y
j=1
where f, g1, ..., gr are continuous real functions on [a, b], and derive a uniqueness theorem for

solutions of the equation

y® 4 ge(@)y* D 4t go()y + g1(2)y = f(2)

subject to initial conditions

y(a)=c1, y'(@)=co ..., y* V(a)=c
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Put (I)('Tv Y, Y2, .- - 7yk) = (y27 Y3y Yk, f(.’L') - Z?:l g](x)y]) andc = (017 C2, ... 7Ck)r then the
given system coincides with the initial-value problem

y =®(z,y), yla)=c

Observe that fory; = (y11, 921, - ye1) and y2 = (y12, Y2, - -, Yk2),
i 2
|®(z,y2) — (I)(xa}’1)|2 = Z yio — yir)’ !Zgg (yj2 — yjl)]
=2
Denote M = sup{|g;(z)| : = € [a,b], 1 < j <k}, then
i 2
B (2, y2) — (2, y)* <D (i2 — yin)” + M {Z (y52 — yjl)]
=2
k k
Z (yi2 — yin)* + kM? Z (yj2 — yin)?
=2

k
1+]<3M Zyﬂ Z/Jl
7j=1

= (14 kM?) [ys — y1/?

Hence the uniqueness of the solution follows.
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