

AoPS Community

1987 Romania Team Selection Test

Romania Team Selection Test 1987

www.artofproblemsolving.com/community/c4446

by Valentin Vornicu, schulmannerism, Lagrangia, Arne, grobber, dblues

Day 1 June 8th

1 Let a, b, c be distinct real numbers such that a + b + c > 0. Let M be the set of 3×3 matrices with the property that each line and each column contain all given numbers a, b, c. Find $\{\max\{\det A \mid A \in M\}\}$ and the number of matrices which realise the maximum value.

Mircea Becheanu

2 Find all positive integers A which can be represented in the form:

$$A = \left(m - \frac{1}{n}\right)\left(n - \frac{1}{p}\right)\left(p - \frac{1}{m}\right)$$

where $m \ge n \ge p \ge 1$ are integer numbers.

Ioan Bogdan

3 Let *A* be the set $A = \{1, 2, ..., n\}$. Determine the maximum number of elements of a subset $B \subset A$ such that for all elements x, y from *B*, x + y cannot be divisible by x - y.

Mircea Lascu, Dorel Mihet

4 Let $P(X) = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0$ be a real polynomial of degree n. Suppose n is an even number and:

a) $a_0 > 0$, $a_n > 0$;

b)
$$a_1^2 + a_2^2 + \ldots + a_{n-1}^2 \le \frac{4\min(a_0^2, a_n^2)}{n-1}.$$

Prove that $P(x) \ge 0$ for all real values x.

Laurentiu Panaitopol

Day 2 June 9th

5 Let A be the set $\{1, 2, ..., n\}$, $n \ge 2$. Find the least number n for which there exist permutations

AoPS Community

1987 Romania Team Selection Test

 α , β , γ , δ of the set *A* with the property:

$$\sum_{i=1}^{n} \alpha(i)\beta(i) = \frac{19}{10} \sum_{i=1}^{n} \gamma(i)\delta(i).$$

Marcel Chirita

6 The plane is covered with network of regular congruent disjoint hexagons. Prove that there cannot exist a square which has its four vertices in the vertices of the hexagons.

Gabriel Nagy

- 7 Determine all positive integers n such that n divides $3^n 2^n$.
- 8 Let ABCD be a square and a be the length of his edges. The segments AE and CF are perpendicular on the square's plane in the same half-space and they have the length AE = a, CF = b where $a < b < a\sqrt{3}$. If K denoted the set of the interior points of the square ABCD determine $\min_{M \in K} (\max(EM, FM))$ and $\max_{M \in K} (\min(EM, FM))$.

Octavian Stanasila

Day 3 June 10th

9 Prove that for all real numbers $\alpha_1, \alpha_2, \ldots, \alpha_n$ we have

$$\sum_{i=1}^{n} \sum_{j=1}^{n} ij \cos\left(\alpha_i - \alpha_j\right) \ge 0.$$

Octavian Stanasila

10 Let a, b, c be integer numbers such that $(a+b+c) | (a^2+b^2+c^2)$. Show that there exist infinitely many positive integers n such that $(a+b+c) | (a^n+b^n+c^n)$.

Laurentiu Panaitopol

11 Let $P(X,Y) = X^2 + 2aXY + Y^2$ be a real polynomial where $|a| \ge 1$. For a given positive integer $n, n \ge 2$ consider the system of equations:

$$P(x_1, x_2) = P(x_2, x_3) = \ldots = P(x_{n-1}, x_n) = P(x_n, x_1) = 0.$$

We call two solutions $(x_1, x_2, ..., x_n)$ and $(y_1, y_2, ..., y_n)$ of the system to be equivalent if there exists a real number $\lambda \neq 0$, $x_1 = \lambda y_1, ..., x_n = \lambda y_n$. How many nonequivalent solutions does the system have?

Mircea Becheanu

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.