AoPS Community

Romania Team Selection Test 1988

www.artofproblemsolving.com/community/c4447
by Valentin Vornicu, Megus, grobber, Lagrangia, seshadri

Day 1 April 15th

1 Consider a sphere and a plane π. For a variable point $M \in \pi$, exterior to the sphere, one considers the circular cone with vertex in M and tangent to the sphere. Find the locus of the centers of all circles which appear as tangent points between the sphere and the cone.

Octavian Stanasila
2 Let $O A B C$ be a trihedral angle such that

$$
\angle B O C=\alpha, \quad \angle C O A=\beta, \quad \angle A O B=\gamma, \quad \alpha+\beta+\gamma=\pi .
$$

For any interior point P of the trihedral angle let P_{1}, P_{2} and P_{3} be the projections of P on the three faces. Prove that $O P \geq P P_{1}+P P_{2}+P P_{3}$.

Constantin Cocea
3 Consider all regular convex and star polygons inscribed in a given circle and having n sides. We call two such polygons to be equivalent if it is possible to obtain one from the other using a rotation about the center of the circle. How many classes of such polygons exist?

Mircea Becheanu

4 Prove that for all positive integers $0<a_{1}<a_{2}<\cdots<a_{n}$ the following inequality holds:

$$
\left(a_{1}+a_{2}+\cdots+a_{n}\right)^{2} \leq a_{1}^{3}+a_{2}^{3}+\cdots+a_{n}^{3} .
$$

Viorel Vajaitu
5 The cells of a 11×11 chess-board are colored in 3 colors. Prove that there exists on the board a $m \times n$ rectangle such that the four cells interior to the rectangle and containing the four vertices of the rectangle have the same color.

Ioan Tomescu
Day 2 June 10th

6 Find all vectors of n real numbers $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ such that

$$
\left\{\begin{aligned}
x_{1} & =\frac{1}{x_{2}}+\frac{1}{x_{3}}+\cdots+\frac{1}{x_{n}} \\
x_{2} & =\frac{1}{x_{1}}+\frac{1}{x_{3}}+\cdots+\frac{1}{x_{n}} \\
& \cdots \\
x_{n} & =\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n-1}}
\end{aligned}\right.
$$

Mircea Becheanu

7 In the plane there are given the lines ℓ_{1}, ℓ_{2}, the circle \mathcal{C} with its center on the line ℓ_{1} and a second circle \mathcal{C}_{1} which is tangent to ℓ_{1}, ℓ_{2} and \mathcal{C}. Find the locus of the tangent point between \mathcal{C} and \mathcal{C}_{1} while the center of \mathcal{C} is variable on ℓ_{1}.

Mircea Becheanu

8 The positive integer n is given and for all positive integers $k, 1 \leq k \leq n$, denote by $a_{k n}$ the number of all ordered sequences $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ of positive integers which verify the following two conditions:
a) $1 \leq i_{1}<i_{2}<\cdots i_{k} \leq n ;$
b) $i_{r+1}-i_{r} \equiv 1(\bmod 2)$, for all $r \in\{1,2, \ldots, k-1\}$.

Compute the number $a(n)=\sum_{k=1}^{n} a_{k n}$.
Ioan Tomescu
9 Prove that for all positive integers $n \geq 1$ the number $\prod_{k=1}^{n} k^{2 k-n-1}$ is also an integer number.
Laurentiu Panaitopol.
Day 3 June 11th
10 Let $p>2$ be a prime number. Find the least positive number a which can be represented as

$$
a=(X-1) f(X)+\left(X^{p-1}+X^{p-2}+\cdots+X+1\right) g(X),
$$

where $f(X)$ and $g(X)$ are integer polynomials.
Mircea Becheanu.

11 Let x, y, z be real numbers with $x+y+z=0$. Prove that

$$
|\cos x|+|\cos y|+|\cos z| \geq 1 .
$$

Viorel Vajaitu, Bogdan Enescu

12 The four vertices of a square are the centers of four circles such that the sum of theirs areas equals the square's area. Take an arbitrary point in the interior of each circle. Prove that the four arbitrary points are the vertices of a convex quadrilateral.

Laurentiu Panaitopol

13 Let a be a positive integer. The sequence $\left\{x_{n}\right\}_{n \geq 1}$ is defined by $x_{1}=1, x_{2}=a$ and $x_{n+2}=$ $a x_{n+1}+x_{n}$ for all $n \geq 1$. Prove that (y, x) is a solution of the equation

$$
\left|y^{2}-a x y-x^{2}\right|=1
$$

if and only if there exists a rank k such that $(y, x)=\left(x_{k+1}, x_{k}\right)$.

Serban Buzeteanu

Day 4 June 12th

14 Let Δ denote the set of all triangles in a plane. Consider the function $f: \Delta \rightarrow(0, \infty)$ defined by $f(A B C)=\min \left(\frac{b}{a}, \frac{c}{b}\right)$, for any triangle $A B C$ with $B C=a \leq C A=b \leq A B=c$. Find the set of values of f.

15 Let $[a, b]$ be a given interval of real numbers not containing integers. Prove that there exists $N>0$ such that $[N a, N b]$ does not contain integer numbers and the length of the interval $[N a, N b]$ exceedes $\frac{1}{6}$.

16 The finite sets $A_{1}, A_{2}, \ldots, A_{n}$ are given and we denote by $d(n)$ the number of elements which appear exactly in an odd number of sets chosen from $A_{1}, A_{2}, \ldots, A_{n}$. Prove that for any k, $1 \leq k \leq n$ the number

$$
d(n)-\sum_{i=1}^{n}\left|A_{i}\right|+2 \sum_{i<j}\left|A_{i} \cap A_{j}\right|-\cdots+(-1)^{k} 2^{k-1} \sum_{i_{1}<i_{2}<\cdots<i_{k}}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|
$$

is divisible by 2^{k}.
Ioan Tomescu, Dragos Popescu

