Art of Problem Solving

AoPS Community

Romania Team Selection Test 1991

www.artofproblemsolving.com/community/c4449
by mcyoder, SUPERMAN2, parmenides51, KDS, Lagrangia, Nazar_Serdyuk, Bojan Basic

BMO TST

1 Suppose that a, b are positive integers for which $A=\frac{a+1}{b}+\frac{b}{a}$ is an integer.Prove that $A=3$.
2 Let $A_{1} A_{2} A_{3} A_{4}$ be a tetrahedron. For any permutation (i, j, k, h) of $1,2,3,4$ denote:

- P_{i} the orthogonal projection of A_{i} on $A_{j} A_{k} A_{h}$;
- $B_{i j}$ the midpoint of the edge $A_{i} A j$,
- $C_{i j}$ the midpoint of segment $P_{i} P_{j}$
- $\beta_{i j}$ the plane $B_{i j} P_{h} P_{k}$
- $\delta_{i j}$ the plane $B_{i j} P_{i} P_{j}$
- $\alpha_{i j}$ the plane through $C_{i j}$ orthogonal to $A_{k} A_{h}$
- $\gamma_{i j}$ the plane through $C_{i j}$ orthogonal to $A_{i} A_{j}$.

Prove that if the points P_{i} are not in a plane, then the following sets of planes are concurrent: (a) $\alpha_{i j}$, (b) $\beta_{i j}$, (c) $\gamma_{i j}$, (d) $\delta_{i j}$.

3 Prove the following identity for every $n \in N: \sum_{j+h=n, j \geq h} \frac{(-1)^{h} 2^{j-h}\binom{j}{h}}{j}=\frac{2}{n}$
4 A sequence $\left(a_{n}\right)$ of positive integers satisfies $\left(a_{m}, a_{n}\right)=a_{(m, n)}$ for all m, n. Prove that there is a unique sequence $\left(b_{n}\right)$ of positive integers such that $a_{n}=\prod_{d \mid n} b_{d}$

IMO TST

Day 1

1 Let $M=\left\{A_{1}, A_{2}, \ldots, A_{5}\right\}$ be a set of five points in the plane such that the area of each triangle $A_{i} A_{j} A_{k}$, is greater than 3. Prove that there exists a triangle with vertices in M and having the area greater than 4.

Laurentiu Panaitopol
2 The sequence $\left(a_{n}\right)$ is defined by $a_{1}=a_{2}=1$ and $a_{n+2}=a_{n+1}+a_{n}+k$, where k is a positive integer.
Find the least k for which a_{1991} and 1991 are not coprime.
3 Let C be a coloring of all edges and diagonals of a convex n gon in red and blue (in Romanian, rosu and albastru). Denote by $q_{r}(C)$ (resp. $q_{a}(C)$) the number of quadrilaterals having all its
edges and diagonals red (resp. blue).
Prove: $\min _{C}\left(q_{r}(C)+q_{a}(C)\right) \leq \frac{1}{32}\binom{n}{4}$
4 Let S be the set of all polygonal areas in a plane. Prove that there is a function $f: S \rightarrow(0,1)$ which satisfies $f\left(S_{1} \cup S_{2}\right)=f\left(S_{1}\right)+f\left(S_{2}\right)$ for any $S 1, S 2 \in S$ which have common points only on their borders

Day 2 June 10th

5 In a triangle $A_{1} A_{2} A_{3}$, the excribed circles corresponding to sides $A_{2} A_{3}, A_{3} A_{1}, A_{1} A_{2}$ touch these sides at T_{1}, T_{2}, T_{3}, respectively. If H_{1}, H_{2}, H_{3} are the orthocenters of triangles $A_{1} T_{2} T_{3}, A_{2} T_{3} T_{1}$, $A_{3} T_{1} T_{2}$, respectively, prove that lines $H_{1} T_{1}, H_{2} T_{2}, H_{3} T_{3}$ are concurrent.

6 Let $n \geq 3$ be an integer. A finite number of disjoint arcs with the total sum of length $1-\frac{1}{n}$ are given on a circle of perimeter 1 . Prove that there is a regular n-gon whose all vertices lie on the considered arcs

7 Let $x_{1}, x_{2}, \ldots, x_{2 n}$ be positive real numbers with the sum 1 . Prove that

$$
x_{1}^{2} x_{2}^{2} \ldots x_{n}^{2}+x_{2}^{2} x_{3}^{2} \ldots x_{n+1}^{2}+\ldots+x_{2 n}^{2} x_{1}^{2} \ldots x_{n-1}^{2}<\frac{1}{n^{2 n}}
$$

8 Let n, a, b be integers with $n \geq 2$ and $a \notin\{0,1\}$ and let $u(x)=a x+b$ be the function defined on integers. Show that there are infinitely many functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that $f_{n}(x)=\underbrace{f(f(\cdots f}_{n}(x) \cdots))=u(x)$ for all x.
If $a=1$, show that there is a b for which there is no f with $f_{n}(x) \equiv u(x)$.

Day 3

9 The diagonals of a pentagon $A B C D E$ determine another pentagon $M N P Q R$. If $M N P Q R$ and $A B C D E$ are similar, must $A B C D E$ be regular?

10 Let $a_{1}<a_{2}<\cdots<a_{n}$ be positive integers. Some colouring of \mathbb{Z} is periodic with period t such that for each $x \in \mathbb{Z}$ exactly one of $x+a_{1}, x+a_{2}, \ldots, x+a_{n}$ is coloured. Prove that $n \mid t$.

Andrei Radulescu-Banu

