

AoPS Community

1991 Romania Team Selection Test

Romania Team Selection Test 1991

www.artofproblemsolving.com/community/c4449

by mcyoder, SUPERMAN2, parmenides51, KDS, Lagrangia, Nazar_Serdyuk, Bojan Basic

BMO TST

1	Suppose that a, b are positive integers for which $A = \frac{a+1}{b} + \frac{b}{a}$ is an integer. Prove that $A = 3$.
2	Let $A_1A_2A_3A_4$ be a tetrahedron. For any permutation (i, j, k, h) of $1, 2, 3, 4$ denote: - P_i the orthogonal projection of A_i on $A_jA_kA_h$; - B_{ij} the midpoint of the edge A_iAj , - C_{ij} the midpoint of segment P_iP_j - β_{ij} the plane $B_{ij}P_hP_k$ - δ_{ij} the plane $B_{ij}P_iP_j$ - α_{ij} the plane through C_{ij} orthogonal to A_kA_h - γ_{ij} the plane through C_{ij} orthogonal to A_iA_j . Prove that if the points P_i are not in a plane, then the following sets of planes are concurrent: (a) α_{ij} , (b) β_{ij} , (c) γ_{ij} , (d) δ_{ij} .
3	Prove the following identity for every $n \in N$: $\sum_{j+h=n,j\geq h} \frac{(-1)^{h}2^{j-h}{j \choose h}}{j} = \frac{2}{n}$
4	A sequence (a_n) of positive integers satisfies $(a_m, a_n) = a_{(m,n)}$ for all m, n . Prove that there is a unique sequence (b_n) of positive integers such that $a_n = \prod_{d n} b_d$
IMO	TST
Day	1
1	Let $M = \{A_1, A_2, \dots, A_5\}$ be a set of five points in the plane such that the area of each triangle $A_i A_j A_k$, is greater than 3. Prove that there exists a triangle with vertices in M and having the area greater than 4. Laurentiu Panaitopol
2	The sequence (a_n) is defined by $a_1 = a_2 = 1$ and $a_{n+2} = a_{n+1} + a_n + k$, where k is a positive integer. Find the least k for which a_{1991} and 1991 are not coprime.
3	Let C be a coloring of all edges and diagonals of a convex n gon in red and blue (in Romanian, rosu and albastru). Denote by $q_r(C)$ (resp. $q_a(C)$) the number of quadrilaterals having all its

AoPS Community

1991 Romania Team Selection Test

edges and diagonals red (resp. blue). Prove: $\min_{C}(q_r(C) + q_a(C)) \leq \frac{1}{32} \binom{n}{4}$

4 Let *S* be the set of all polygonal areas in a plane. Prove that there is a function $f : S \to (0, 1)$ which satisfies $f(S_1 \cup S_2) = f(S_1) + f(S_2)$ for any $S1, S2 \in S$ which have common points only on their borders

Day 2 June 10th

- 5 In a triangle $A_1A_2A_3$, the excribed circles corresponding to sides A_2A_3 , A_3A_1 , A_1A_2 touch these sides at T_1 , T_2 , T_3 , respectively. If H_1 , H_2 , H_3 are the orthocenters of triangles $A_1T_2T_3$, $A_2T_3T_1$, $A_3T_1T_2$, respectively, prove that lines H_1T_1 , H_2T_2 , H_3T_3 are concurrent.
- **6** Let $n \ge 3$ be an integer. A finite number of disjoint arcs with the total sum of length $1 \frac{1}{n}$ are given on a circle of perimeter 1. Prove that there is a regular *n*-gon whose all vertices lie on the considered arcs
- 7 Let $x_1, x_2, ..., x_{2n}$ be positive real numbers with the sum 1. Prove that

$$x_1^2 x_2^2 \dots x_n^2 + x_2^2 x_3^2 \dots x_{n+1}^2 + \dots + x_{2n}^2 x_1^2 \dots x_{n-1}^2 < \frac{1}{n^{2n}}$$

8 Let n, a, b be integers with $n \ge 2$ and $a \notin \{0, 1\}$ and let u(x) = ax + b be the function defined on integers. Show that there are infinitely many functions $f : \mathbb{Z} \to \mathbb{Z}$ such that $f_n(x) = \underbrace{f(f(\cdots f(x) \cdots))}_{= u(x)} = u(x)$ for all x.

If a = 1, show that there is a b for which there is no f with $f_n(x) \equiv u(x)$.

Day	3
9	The diagonals of a pentagon $ABCDE$ determine another pentagon $MNPQR$. If $MNPQR$ and $ABCDE$ are similar, must $ABCDE$ be regular?
10	Let $a_1 < a_2 < \cdots < a_n$ be positive integers. Some colouring of \mathbb{Z} is periodic with period t such that for each $x \in \mathbb{Z}$ exactly one of $x + a_1, x + a_2, \ldots, x + a_n$ is coloured. Prove that $n \mid t$.
	Andrei Radulescu-Banu

Art of Problem Solving is an ACS WASC Accredited School.