Art of Problem Solving

AoPS Community

Romania Team Selection Test 1996

www.artofproblemsolving.com/community/c4451
by ehsan2004, Valentin Vornicu, enescu, MysticTerminator, hitIEULER, blahblahblah, julien_santini

Day 1

1 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that for every regular n-gon $A_{1} A_{2} \ldots A_{n}$ we have $f\left(A_{1}\right)+$ $f\left(A_{2}\right)+\cdots+f\left(A_{n}\right)=0$. Prove that $f(x)=0$ for all reals x.

2 Find the greatest positive integer n for which there exist n nonnegative integers $x_{1}, x_{2}, \ldots, x_{n}$, not all zero, such that for any $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$ from the set $\{-1,0,1\}$, not all zero, $\varepsilon_{1} x_{1}+\varepsilon_{2} x_{2}+$ $\cdots+\varepsilon_{n} x_{n}$ is not divisible by n^{3}.
$3 \quad$ Let $x, y \in \mathbb{R}$. Show that if the set $A_{x, y}=\{\cos (n \pi x)+\cos (n \pi y) \mid n \in \mathbb{N}\}$ is finite then $x, y \in \mathbb{Q}$.

Vasile Pop

4 Let $A B C D$ be a cyclic quadrilateral and let M be the set of incenters and excenters of the triangles $B C D, C D A, D A B, A B C$ (so 16 points in total). Prove that there exist two sets \mathcal{K} and \mathcal{L} of four parallel lines each, such that every line in $\mathcal{K} \cup \mathcal{L}$ contains exactly four points of M.

Day 2

$5 \quad$ Let A and B be points on a circle \mathcal{C} with center O such that $\angle A O B=\frac{\pi}{2}$. Circles \mathcal{C}_{1} and \mathcal{C}_{2} are internally tangent to \mathcal{C} at A and B respectively and are also externally tangent to one another. The circle \mathcal{C}_{3} lies in the interior of $\angle A O B$ and it is tangent externally to $\mathcal{C}_{1}, \mathcal{C}_{2}$ at P and R and internally tangent to \mathcal{C} at S. Evaluate the value of $\angle P S R$.
$7 \quad$ Let $a \in \mathbb{R}$ and $f_{1}(x), f_{2}(x), \ldots, f_{n}(x): \mathbb{R} \rightarrow \mathbb{R}$ are the additive functions such that for every $x \in \mathbb{R}$ we have $f_{1}(x) f_{2}(x) \cdots f_{n}(x)=a x^{n}$. Show that there exists $b \in \mathbb{R}$ and $i \in\{1,2, \ldots, n\}$ such that for every $x \in \mathbb{R}$ we have $f_{i}(x)=b x$.

8 Let $p_{1}, p_{2}, \ldots, p_{k}$ be the distinct prime divisors of n and let $a_{n}=\frac{1}{p_{1}}+\frac{1}{p_{2}}+\cdots+\frac{1}{p_{k}}$ for $n \geq 2$. Show that for every positive integer $N \geq 2$ the following inequality holds: $\sum_{k=2}^{N} a_{2} a_{3} \cdots a_{k}<1$

Laurentiu Panaitopol

Day 3

9 Let $n \geq 3$ be an integer and let $x_{1}, x_{2}, \ldots, x_{n-1}$ be nonnegative integers such that

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n-1} & =n \\
x_{1}+2 x_{2}+\cdots+(n-1) x_{n-1} & =2 n-2 .
\end{aligned}
$$

Find the minimal value of $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{k=1}^{n-1} k(2 n-k) x_{k}$.
10 Let n and r be positive integers and A be a set of lattice points in the plane such that any open disc of radius r contains a point of A. Show that
for any coloring of the points of A in n colors there exists four points of the same color which are the vertices of a rectangle.

11 Find all primes p, q such that $\alpha^{3 p q}-\alpha \equiv 0(\bmod 3 p q)$ for all integers α.
12 Let $n \geq 3$ be an integer and let $p \geq 2 n-3$ be a prime number. For a set M of n points in the plane, no 3 collinear, let $f: M \rightarrow\{0,1, \ldots, p-1\}$ be a function such that
(i) exactly one point of M maps to 0 ,
(ii) if a circle \mathcal{C} passes through 3 distinct points of $A, B, C \in M$ then $\sum_{P \in M \cap \mathcal{C}} f(P) \equiv 0$ $(\bmod p)$.

Prove that all the points in M lie on a circle.

Day 4

13 Let $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers and $x_{n+1}=x_{1}+x_{2}+\cdots+x_{n}$. Prove that

$$
\sum_{k=1}^{n} \sqrt{x_{k}\left(x_{n+1}-x_{k}\right)} \leq \sqrt{\sum_{k=1}^{n} x_{n+1}\left(x_{n+1}-x_{k}\right)} .
$$

Mircea Becheanu

14 Let x, y, z be real numbers. Prove that the following conditions are equivalent:
(i) x, y, z are positive numbers and $\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \leq 1$;
(ii) $a^{2} x+b^{2} y+c^{2} z>d^{2}$ holds for every quadrilateral with sides a, b, c, d.

15 Let S be a set of n concentric circles in the plane. Prove that if a function $f: S \rightarrow S$ satisfies the property

$$
d(f(A), f(B)) \geq d(A, B)
$$

for all $A, B \in S$, then $d(f(A), f(B))=d(A, B)$, where d is the euclidean distance function.
16 Let $n \geq 3$ be an integer and let $\mathcal{S} \subset\left\{1,2, \ldots, n^{3}\right\}$ be a set with $3 n^{2}$ elements. Prove that there exist nine distinct numbers $a_{1}, a_{2}, \ldots, a_{9} \in \mathcal{S}$ such that the following system has a solution in nonzero integers:

$$
\begin{aligned}
& a_{1} x+a_{2} y+a_{3} z=0 \\
& a_{4} x+a_{5} y+a_{6} z=0 \\
& a_{7} x+a_{8} y+a_{9} z=0 .
\end{aligned}
$$

Marius Cavachi

