Art of Problem Solving

AoPS Community

Romania Team Selection Test 1997

www.artofproblemsolving.com/community/c4452
by WakeUp, ehsan2004, hophinhan, Peter, Usetobe, LastPrime, huyhoang, piaulle

Day 1

1 We are given in the plane a line ℓ and three circles with centres A, B, C such that they are all tangent to ℓ and pairwise externally tangent to each other. Prove that the triangle $A B C$ has an obtuse angle and find all possible values of this this angle.

Mircea Becheanu

2 Find the number of sets A containing 9 positive integers with the following property. for any positive integer $n \leq 500$, there exists a subset $B \subset A$ such that $\sum_{b \in B} b=n$.
Bogdan Enescu \& Dan Ismailescu
3 Let $n \geq 4$ be a positive integer and let M be a set of n points in the plane, where no three points are collinear and not all of the n points being concyclic. Find all real functions $f: M \rightarrow \mathbb{R}$ such that for any circle \mathcal{C} containing at least three points from M, the following equality holds:

$$
\sum_{P \in \mathcal{C} \cap M} f(P)=0
$$

Dorel Mihet
4 Let $A B C$ be a triangle, D be a point on side $B C$, and let \mathcal{O} be the circumcircle of triangle $A B C$. Show that the circles tangent to $\mathcal{O}, A D, B D$ and to $\mathcal{O}, A D, D C$ are tangent to each other if and only if $\angle B A D=\angle C A D$.
Dan Branzei

Day 2

1 Let $V A_{1} A_{2} \ldots A_{n}$ be a pyramid, where $n \geq 4$. A plane Π intersects the edges $V A_{1}, V A_{2}, \ldots, V A_{n}$ at the points $B_{1}, B_{2}, \ldots, B_{n}$ respectively such that the polygons $A_{1} A_{2} \ldots A_{n}$ and $B_{1} B_{2} \ldots B_{n}$ are similar. Prove that the plane Π is parallel to the plane containing the base $A_{1} A_{2} \ldots A_{n}$.

Laurentiu Panaitopol

2 Suppose that A be the set of all positive integer that can write in form $a^{2}+2 b^{2}$ (where $a, b \in \mathbb{Z}$ and b is not equal to 0). Show that if p be a prime number and $p^{2} \in A$ then $p \in A$.
Marcel Tena

AoPS Community

3 Let p be a prime number, $p \geq 5$, and k be a digit in the p-adic representation of positive integers. Find the maximal length of a non constant arithmetic progression whose terms do not contain the digit k in their p-adic representation.

4 Let p, q, r be distinct prime numbers and let

$$
A=\left\{p^{a} q^{b} r^{c} \mid 0 \leq a, b, c \leq 5\right\}
$$

Find the least $n \in \mathbb{N}$ such that for any $B \subset A$ where $|B|=n$, has elements x and y such that x divides y.

Ioan Tomescu

Day 3

1 Let $A B C D E F$ be a convex hexagon, and let $P=A B \cap C D, Q=C D \cap E F, R=E F \cap A B$, $S=B C \cap D E, T=D E \cap F A, U=F A \cap B C$. Prove that
$\frac{P Q}{C D}=\frac{Q R}{E F}=\frac{R P}{A B}$ if and only if $\frac{S T}{D E}=\frac{T U}{F A}=\frac{U S}{B C}$
2 Let P be the set of points in the plane and D the set of lines in the plane. Determine whether there exists a bijective function $f: P \rightarrow D$ such that for any three collinear points A, B, C, the lines $f(A), f(B), f(C)$ are either parallel or concurrent.

Gefry Barad

3 Find all functions $f: \mathbb{R} \rightarrow[0 ;+\infty)$ such that:

$$
f\left(x^{2}+y^{2}\right)=f\left(x^{2}-y^{2}\right)+f(2 x y)
$$

for all real numbers x and y.

Laurentiu Panaitopol

4 Let $n \geq 2$ be an integer and let $P(X)=X^{n}+a_{n-1} X^{n-1}+\ldots+a_{1} X+1$ be a polynomial with positive integer coefficients. Suppose that $a_{k}=a_{n-k}$ for all $k \in 1,2, \ldots, n-1$. Prove that there exist infinitely many pairs of positive integers x, y such that $x \mid P(y)$ and $y \mid P(x)$.
Remus Nicoara

Day 4

1 Let $P(X), Q(X)$ be monic irreducible polynomials with rational coefficients. suppose that $P(X)$ and $Q(X)$ have roots α and β respectively, such that $\alpha+\beta$ is rational. Prove that $P(X)^{2}-Q(X)^{2}$ has a rational root.

Bogdan Enescu

2 Let $a>1$ be a positive integer. Show that the set of integers

$$
\left\{a^{2}+a-1, a^{3}+a^{2}-1, \ldots, a^{n+1}+a^{n}-1, \ldots\right\}
$$

contains an infinite subset of pairwise coprime integers.
Mircea Becheanu
3 The vertices of a regular dodecagon are coloured either blue or red. Find the number of all possible colourings which do not contain monochromatic sub-polygons.

Vasile Pop

$4 \quad$ Let w be a circle and $A B$ a line not intersecting w. Given a point P_{0} on w, define the sequence P_{0}, P_{1}, \ldots as follows: P_{n+1} is the second intersection with w of the line passing through B and the second intersection of the line $A P_{n}$ with w. Prove that for a positive integer k, if $P_{0}=P_{k}$ for some choice of P_{0}, then $P_{0}=P_{k}$ for any choice of P_{0}.

Gheorge Eckstein

