

AoPS Community

1997 Romania Team Selection Test

Romania Team Selection Test 1997

www.artofproblemsolving.com/community/c4452

by WakeUp, ehsan2004, hophinhan, Peter, Usetobe, LastPrime, huyhoang, piaulle

Day	1
-----	---

1 We are given in the plane a line ℓ and three circles with centres A, B, C such that they are all tangent to ℓ and pairwise externally tangent to each other. Prove that the triangle ABC has an obtuse angle and find all possible values of this this angle.

Mircea Becheanu

2 Find the number of sets A containing 9 positive integers with the following property: for any positive integer $n \le 500$, there exists a subset $B \subset A$ such that $\sum_{b \in B} b = n$.

Bogdan Enescu & Dan Ismailescu

3 Let $n \ge 4$ be a positive integer and let M be a set of n points in the plane, where no three points are collinear and not all of the n points being concyclic. Find all real functions $f: M \to \mathbb{R}$ such that for any circle C containing at least three points from M, the following equality holds:

$$\sum_{P\in\mathcal{C}\cap M}f(P)=0$$

Dorel Mihet

4 Let ABC be a triangle, D be a point on side BC, and let \mathcal{O} be the circumcircle of triangle ABC. Show that the circles tangent to \mathcal{O} , AD, BD and to \mathcal{O} , AD, DC are tangent to each other if and only if $\angle BAD = \angle CAD$.

Dan Branzei

	Let $V A = A$ be a puramid where $m > A$ A plane Π interporte the edges $V A = V A = V A$
	at the points B_1, B_2, \ldots, B_n respectively such that the polygons $A_1A_2 \ldots A_n$ and $B_1B_2 \ldots B_n$ are similar. Prove that the plane Π is parallel to the plane containing the base $A_1A_2 \ldots A_n$.
2 5	Suppose that A be the set of all positive integer that can write in form $a^2 + 2b^2$ (where $a, b \in \mathbb{Z}$ and b is not equal to 0). Show that if p be a prime number and $p^2 \in A$ then $p \in A$. Marcel Tena

AoPS Community

1997 Romania Team Selection Test

- **3** Let p be a prime number, $p \ge 5$, and k be a digit in the p-adic representation of positive integers. Find the maximal length of a non constant arithmetic progression whose terms do not contain the digit k in their p-adic representation.
- **4** Let *p*, *q*, *r* be distinct prime numbers and let

$$A = \{ p^a q^b r^c \mid 0 \le a, b, c \le 5 \}$$

Find the least $n \in \mathbb{N}$ such that for any $B \subset A$ where |B| = n, has elements x and y such that x divides y.

Ioan Tomescu

Day 3	
1	Let $ABCDEF$ be a convex hexagon, and let $P = AB \cap CD$, $Q = CD \cap EF$, $R = EF \cap AB$, $S = BC \cap DE$, $T = DE \cap FA$, $U = FA \cap BC$. Prove that
	$\frac{PQ}{CD} = \frac{QR}{EF} = \frac{RP}{AB}$ if and only if $\frac{ST}{DE} = \frac{TU}{FA} = \frac{US}{BC}$
2	Let <i>P</i> be the set of points in the plane and <i>D</i> the set of lines in the plane. Determine whether there exists a bijective function $f : P \to D$ such that for any three collinear points <i>A</i> , <i>B</i> , <i>C</i> , the lines $f(A)$, $f(B)$, $f(C)$ are either parallel or concurrent.
	Gefry Barad
3	Find all functions $f : \mathbb{R} \to [0; +\infty)$ such that:
	$f(x^2 + y^2) = f(x^2 - y^2) + f(2xy)$
	for all real numbers x and y .
	Laurentiu Panaitopol
4	Let $n \ge 2$ be an integer and let $P(X) = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + 1$ be a polynomial with positive integer coefficients. Suppose that $a_k = a_{n-k}$ for all $k \in 1, 2, \ldots, n-1$. Prove that there exist infinitely many pairs of positive integers x, y such that $x P(y)$ and $y P(x)$.
	Remus Nicoara
Day 4	
1	Let $P(X)$, $Q(X)$ be monic irreducible polynomials with rational coefficients. suppose that $P(X)$ and $Q(X)$ have roots α and β respectively, such that $\alpha + \beta$ is rational. Prove that $P(X)^2 - Q(X)^2$ has a rational root.
	Bogdan Enescu

AoPS Community

1997 Romania Team Selection Test

2 Let a > 1 be a positive integer. Show that the set of integers

 $\{a^2 + a - 1, a^3 + a^2 - 1, \dots, a^{n+1} + a^n - 1, \dots\}$

contains an infinite subset of pairwise coprime integers.

Mircea Becheanu

3 The vertices of a regular dodecagon are coloured either blue or red. Find the number of all possible colourings which do not contain monochromatic sub-polygons.

Vasile Pop

4 Let w be a circle and AB a line not intersecting w. Given a point P_0 on w, define the sequence P_0, P_1, \ldots as follows: P_{n+1} is the second intersection with w of the line passing through B and the second intersection of the line AP_n with w. Prove that for a positive integer k, if $P_0 = P_k$ for some choice of P_0 , then $P_0 = P_k$ for any choice of P_0 .

Gheorge Eckstein

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🕬