## AoPS Community

## Romania Team Selection Test 1999

www.artofproblemsolving.com/community/c4454
by Iris Aliaj, Valentin Vornicu, Celeborn, nttu, Armo, orl, Pascual2005, Labiliau

## Day 1 April 17th

1 a) Prove that it is possible to choose one number out of any 39 consecutive positive integers, having the sum of its digits divisible by 11;
b) Find the first 38 consecutive positive integers none of which have the sum of its digits divisible by 11 .

2 Let $A B C$ be an acute triangle. The interior angle bisectors of $\angle A B C$ and $\angle A C B$ meet the opposite sides in $L$ and $M$ respectively. Prove that there is a point $K$ in the interior of the side $B C$ such that the triangle $K L M$ is equilateral if and only if $\angle B A C=60^{\circ}$.

3 Prove that for any positive integer $n$, the number

$$
S_{n}=\binom{2 n+1}{0} \cdot 2^{2 n}+\binom{2 n+1}{2} \cdot 2^{2 n-2} \cdot 3+\cdots+\binom{2 n+1}{2 n} \cdot 3^{n}
$$

is the sum of two consecutive perfect squares.

## Dorin Andrica

4 Show that for all positive real numbers $x_{1}, x_{2}, \ldots, x_{n}$ with product 1 , the following inequality holds

$$
\frac{1}{n-1+x_{1}}+\frac{1}{n-1+x_{2}}+\cdots+\frac{1}{n-1+x_{n}} \leq 1 .
$$

Day 2 April 25th
5 Let $x_{1}, x_{2}, \ldots, x_{n}$ be distinct positive integers. Prove that

$$
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \geq \frac{2 n+1}{3}\left(x_{1}+x_{2}+\cdots+x_{n}\right) .
$$

Laurentiu Panaitopol
6 Let $A B C$ be a triangle, $H$ its orthocenter, $O$ its circumcenter, and $R$ its circumradius. Let $D$ be the reflection of the point $A$ across the line $B C$, let $E$ be the reflection of the point $B$ across the line $C A$, and let $F$ be the reflection of the point $C$ across the line $A B$. Prove that the points $D, E$ and $F$ are collinear if and only if $O H=2 R$.

## AoPS Community

7 Prove that for any integer $n, n \geq 3$, there exist $n$ positive integers $a_{1}, a_{2}, \ldots, a_{n}$ in arithmetic progression, and $n$ positive integers in geometric progression $b_{1}, b_{2}, \ldots, b_{n}$ such that

$$
b_{1}<a_{1}<b_{2}<a_{2}<\cdots<b_{n}<a_{n} .
$$

Give an example of two such progressions having at least five terms.

## Mihai Baluna

## Day 3 May 15th

8 Let $a$ be a positive real number and $\left\{x_{n}\right\}_{n \geq 1}$ a sequence of real numbers such that $x_{1}=a$ and

$$
x_{n+1} \geq(n+2) x_{n}-\sum_{k=1}^{n-1} k x_{k}, \forall n \geq 1
$$

Prove that there exists a positive integer $n$ such that $x_{n}>1999$ !.

## Ciprian Manolescu

9 Let $O, A, B, C$ be variable points in the plane such that $O A=4, O B=2 \sqrt{3}$ and $O C=\sqrt{22}$. Find the maximum value of the area $A B C$.

## Mihai Baluna

10 Determine all positive integers $n$ for which there exists an integer $m$ such that $2^{n}-1$ is a divisor of $m^{2}+9$.

Day 4 May 22nd
11 Let $a, n$ be integer numbers, $p$ a prime number such that $p>|a|+1$. Prove that the polynomial $f(x)=x^{n}+a x+p$ cannot be represented as a product of two integer polynomials.

## Laurentiu Panaitopol

12 Two circles intersect at two points $A$ and $B$. A line $\ell$ which passes through the point $A$ meets the two circles again at the points $C$ and $D$, respectively. Let $M$ and $N$ be the midpoints of the arcs $B C$ and $B D$ (which do not contain the point $A$ ) on the respective circles. Let $K$ be the midpoint of the segment $C D$. Prove that $\measuredangle M K N=90^{\circ}$.

13 Let $n \geq 3$ and $A_{1}, A_{2}, \ldots, A_{n}$ be points on a circle. Find the largest number of acute triangles that can be considered with vertices in these points.

## G. Eckstein

Day 5 May 23rd
15 The participants to an international conference are native and foreign scientist. Each native scientist sends a message to a foreign scientist and each foreign scientist sends a message to a native scientist. There are native scientists who did not receive a message.

Prove that there exists a set $S$ of native scientists such that the outer $S$ scientists are exactly those who received messages from those foreign scientists who did not receive messages from scientists belonging to $S$.

## Radu Niculescu

16 Let $X$ be a set with $n$ elements, and let $A_{1}, A_{2}, \ldots, A_{m}$ be subsets of $X$ such that:

1) $\left|A_{i}\right|=3$ for every $i \in\{1,2, \ldots, m\}$;
2) $\left|A_{i} \cap A_{j}\right| \leq 1$ for all $i, j \in\{1,2, \ldots, m\}$ such that $i \neq j$.

Prove that there exists a subset $A$ of $X$ such that $A$ has at least $[\sqrt{2 n}]$ elements, and for every $i \in\{1,2, \ldots, m\}$, the set $A$ does not contain $A_{i}$.

Alternative formulation. Let $X$ be a finite set with $n$ elements and $A_{1}, A_{2}, \ldots, A_{m}$ be threeelements subsets of $X$, such that $\left|A_{i} \cap A_{j}\right| \leq 1$, for every $i \neq j$. Prove that there exists $A \subseteq X$ with $|A| \geq\lfloor\sqrt{2 n}\rfloor$, such that none of $A_{i}$ 's is a subset of $A$.

17 A polyhedron $P$ is given in space. Find whether there exist three edges in $P$ which can be the sides of a triangle. Justify your answer!

Barbu Berceanu

