

AoPS Community

2000 Romania Team Selection Test

Romania Team Selection Test 2000

www.artofproblemsolving.com/community/c4455

by WakeUp, manlio, Max D.R., Amir Hossein, orl, Valentin Vornicu, CoBa_c_Kacka, Agr_94_Math, Cezar Lupu

Day 1

1 Let $n \ge 2$ be a positive integer. Find the number of functions $f : \{1, 2, ..., n\} \rightarrow \{1, 2, 3, 4, 5\}$ which have the following property: $|f(k+1) - f(k)| \ge 3$, for any k = 1, 2, ..., n-1.

Vasile Pop

2 Let $n \ge 1$ be a positive integer and $x_1, x_2, ..., x_n$ be real numbers such that $|x_{k+1} - x_k| \le 1$ for k = 1, 2, ..., n - 1. Prove that

$$\sum_{k=1}^{n} |x_k| - \left| \sum_{k=1}^{n} x_k \right| \le \frac{n^2 - 1}{4}$$

Gh. Eckstein

3 Prove that for any positive integers n and k there exist positive integers a > b > c > d > e > k such that

$$n = \begin{pmatrix} a \\ 3 \end{pmatrix} \pm \begin{pmatrix} b \\ 3 \end{pmatrix} \pm \begin{pmatrix} c \\ 3 \end{pmatrix} \pm \begin{pmatrix} d \\ 3 \end{pmatrix} \pm \begin{pmatrix} e \\ 3 \end{pmatrix}$$

Radu Ignat

4 Let $P_1P_2 \dots P_n$ be a convex polygon in the plane. We assume that for any arbitrary choice of vertices P_i, P_j there exists a vertex in the polygon P_k distinct from P_i, P_j such that $\angle P_iP_kP_j = 60^\circ$. Show that n = 3.

Radu Todor

Day 2

1 Prove that the equation $x^3 + y^3 + z^3 = t^4$ has infinitely many solutions in positive integers such that gcd(x, y, z, t) = 1.

Mihai Pitticari & Sorin Rdulescu

2 Let ABC be a triangle and *M* be an interior point. Prove that

 $\min\{MA, MB, MC\} + MA + MB + MC < AB + AC + BC.$

3	Determine all pairs (m,n) of positive integers such that a $m\times n$ rectangle can be tiled with L-trominoes.
Day	3
1	Let $a > 1$ be an odd positive integer. Find the least positive integer n such that 2^{2000} is a divisor of $a^n - 1$.
	Mircea Becheanu
2	Let <i>ABC</i> be an acute-angled triangle and <i>M</i> be the midpoint of the side <i>BC</i> . Let <i>N</i> be a point in the interior of the triangle <i>ABC</i> such that $\angle NBA = \angle BAM$ and $\angle NCA = \angle CAM$. Prove that $\angle NAB = \angle MAC$.
	Gabriel Nagy
3	Let <i>S</i> be the set of interior points of a sphere and <i>C</i> be the set of interior points of a circle. Find, with proof, whether there exists a function $f: S \to C$ such that $d(A, B) \le d(f(A), f(B))$ for any two points $A, B \in S$ where $d(X, Y)$ denotes the distance between the points <i>X</i> and <i>Y</i> .
	Marius Cavachi
Day 4	4
1	Let P_1 be a regular <i>n</i> -gon, where $n \in \mathbb{N}$. We construct P_2 as the regular <i>n</i> -gon whose vertices are the midpoints of the edges of P_1 . Continuing analogously, we obtain regular <i>n</i> -gons P_3, P_4, \ldots, P_m . For $m \ge n^2 - n + 1$, find the maximum number k such that for any colouring of vertices of P_1, \ldots, P_m in k colours there exists an isosceles trapezium <i>ABCD</i> whose vertices A, B, C, D have the same colour.
	Radu Ignat
2	Let P, Q be two monic polynomials with complex coefficients such that $P(P(x)) = Q(Q(x))$ for all x . Prove that $P = Q$.
	Marius Cavachi
3	Prove that every positive rational number can be represented in the form $rac{a^3+b^3}{c^3+d^3}$ where a,b,c,d are positive integers.

Act of Problem Solving is an ACS WASC Accredited School.