Art of Problem Solving

AoPS Community

Romania Team Selection Test 2000

www.artofproblemsolving.com/community/c4455
by WakeUp, manlio, Max D.R., Amir Hossein, orl, Valentin Vornicu, CoBa_c_Kacka, Agr_94_Math, Cezar Lupu

Day 1

1 Let $n \geq 2$ be a positive integer. Find the number of functions $f:\{1,2, \ldots, n\} \rightarrow\{1,2,3,4,5\}$ which have the following property: $|f(k+1)-f(k)| \geq 3$, for any $k=1,2, \ldots n-1$.

Vasile Pop

2 Let $n \geq 1$ be a positive integer and $x_{1}, x_{2} \ldots, x_{n}$ be real numbers such that $\left|x_{k+1}-x_{k}\right| \leq 1$ for $k=1,2, \ldots, n-1$. Prove that

$$
\sum_{k=1}^{n}\left|x_{k}\right|-\left|\sum_{k=1}^{n} x_{k}\right| \leq \frac{n^{2}-1}{4}
$$

Gh. Eckstein

3 Prove that for any positive integers n and k there exist positive integers $a>b>c>d>e>k$ such that

$$
n=\binom{a}{3} \pm\binom{ b}{3} \pm\binom{ c}{3} \pm\binom{ d}{3} \pm\binom{ e}{3}
$$

Radu Ignat

4 Let $P_{1} P_{2} \ldots P_{n}$ be a convex polygon in the plane. We assume that for any arbitrary choice of vertices P_{i}, P_{j} there exists a vertex in the polygon P_{k} distinct from P_{i}, P_{j} such that $\angle P_{i} P_{k} P_{j}=$ 60°. Show that $n=3$.

Radu Todor

Day 2

1 Prove that the equation $x^{3}+y^{3}+z^{3}=t^{4}$ has infinitely many solutions in positive integers such that $\operatorname{gcd}(x, y, z, t)=1$.

Mihai Pitticari \& Sorin Rdulescu

2 Let ABC be a triangle and M be an interior point. Prove that

$$
\min \{M A, M B, M C\}+M A+M B+M C<A B+A C+B C .
$$

3 Determine all pairs (m, n) of positive integers such that a $m \times n$ rectangle can be tiled with L-trominoes.

Day 3

1 Let $a>1$ be an odd positive integer. Find the least positive integer n such that 2^{2000} is a divisor of $a^{n}-1$.

Mircea Becheanu

2 Let $A B C$ be an acute-angled triangle and M be the midpoint of the side $B C$. Let N be a point in the interior of the triangle $A B C$ such that $\angle N B A=\angle B A M$ and $\angle N C A=\angle C A M$. Prove that $\angle N A B=\angle M A C$.

Gabriel Nagy

3 Let S be the set of interior points of a sphere and C be the set of interior points of a circle. Find, with proof, whether there exists a function $f: S \rightarrow C$ such that $d(A, B) \leq d(f(A), f(B))$ for any two points $A, B \in S$ where $d(X, Y)$ denotes the distance between the points X and Y.

Marius Cavachi

Day 4

$1 \quad$ Let P_{1} be a regular n-gon, where $n \in \mathbb{N}$. We construct P_{2} as the regular n-gon whose vertices are the midpoints of the edges of P_{1}. Continuing analogously, we obtain regular n-gons $P_{3}, P_{4}, \ldots, P_{m}$. For $m \geq n^{2}-n+1$, find the maximum number k such that for any colouring of vertices of P_{1}, \ldots, P_{m} in k colours there exists an isosceles trapezium $A B C D$ whose vertices A, B, C, D have the same colour.

Radu Ignat
2 Let P, Q be two monic polynomials with complex coefficients such that $P(P(x))=Q(Q(x))$ for all x. Prove that $P=Q$.

Marius Cavachi

3 Prove that every positive rational number can be represented in the form $\frac{a^{3}+b^{3}}{c^{3}+d^{3}}$ where a,b,c,d are positive integers.

