AoPS Community

Romania Team Selection Test 2001

www.artofproblemsolving.com/community/c4456
by WakeUp, orl, Pascual2005

Day 1

1 Show that if a, b, c are complex numbers that such that

$$
(a+b)(a+c)=b \quad(b+c)(b+a)=c \quad(c+a)(c+b)=a
$$

then a, b, c are real numbers.
2 a) Let $f, g: \mathbb{Z} \rightarrow \mathbb{Z}$ be one to one maps. Show that the function $h: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $h(x)=$ $f(x) g(x)$, for all $x \in \mathbb{Z}$, cannot be a surjective function.
b) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a surjective function. Show that there exist surjective functions $g, h: \mathbb{Z} \rightarrow \mathbb{Z}$ such that $f(x)=g(x) h(x)$, for all $x \in \mathbb{Z}$.

3 The sides of a triangle have lengths a, b, c. Prove that:

$$
\begin{aligned}
(-a+b+c)(a-b+c)+ & (a-b+c)(a+b-c)+(a+b-c)(-a+b+c) \\
& \leq \sqrt{a b c}(\sqrt{a}+\sqrt{b}+\sqrt{c})
\end{aligned}
$$

4 Three schools have 200 students each. Every student has at least one friend in each school (if the student a is a friend of the student b then b is a friend of a).
It is known that there exists a set E of 300 students (among the 600) such that for any school S and any two students $x, y \in E$ but not in S, the number of friends in S of x and y are different. Show that one can find a student in each school such that they are friends with each other.

Day 2

1 Find all polynomials with real coefficients P such that

$$
P(x) P\left(2 x^{2}-1\right)=P\left(x^{2}\right) P(2 x-1)
$$

for every $x \in \mathbb{R}$.
2 The vertices A, B, C and D of a square lie outside a circle centred at M. Let $A A^{\prime}, B B^{\prime}, C C^{\prime}, D D^{\prime}$ be tangents to the circle. Assume that the segments $A A^{\prime}, B B^{\prime}, C C^{\prime}, D D^{\prime}$ are the consecutive sides of a quadrilateral p in which a circle is inscribed. Prove that p has an axis of symmetry.

AoPS Community

2001 Romania Team Selection Test

3 Find the least $n \in N$ such that among any n rays in space sharing a common origin there exist two which form an acute angle.

4 Show that the set of positive integers that cannot be represented as a sum of distinct perfect squares is finite.

Day 3

1 Let n be a positive integer and $f(x)=a_{m} x^{m}+\ldots+a_{1} X+a_{0}$, with $m \geq 2$, a polynomial with integer coefficients such that:
a) $a_{2}, a_{3} \ldots a_{m}$ are divisible by all prime factors of n,
b) a_{1} and n are relatively prime.

Prove that for any positive integer k, there exists a positive integer c, such that $f(c)$ is divisible by n^{k}.

3 Let p and q be relatively prime positive integers. A subset S of $\{0,1,2, \ldots\}$ is called ideal if $0 \in S$ and for each element $n \in S$, the integers $n+p$ and $n+q$ belong to S. Determine the number of ideal subsets of $\{0,1,2, \ldots\}$.

Day 4

1 Find all pairs (m, n) of positive integers, with $m, n \geq 2$, such that $a^{n}-1$ is divisible by m for each $a \in\{1,2,3, \ldots, n\}$.

2 Prove that there is no function $f:(0, \infty) \rightarrow(0, \infty)$ such that

$$
f(x+y) \geq f(x)+y f(f(x))
$$

for every $x, y \in(0, \infty)$.
3 The tangents at A and B to the circumcircle of the acute triangle $A B C$ intersect the tangent at C at the points D and E, respectively. The line $A E$ intersects $B C$ at P and the line $B D$ intersects $A C$ at R. Let Q and S be the midpoints of the segments $A P$ and $B R$ respectively. Prove that $\angle A B Q=\angle B A S$.

4 Consider a convex polyhedron P with vertices V_{1}, \ldots, V_{p}. The distinct vertices V_{i} and V_{j} are called neighbours if they belong to the same face of the polyhedron. To each vertex V_{k} we assign a number $v_{k}(0)$, and construct inductively the sequence $v_{k}(n)(n \geq 0)$ as follows: $v_{k}(n+$ 1) is the average of the $v_{j}(n)$ for all neighbours V_{j} of V_{k}. If all numbers $v_{k}(n)$ are integers, prove that there exists the positive integer N such that all $v_{k}(n)$ are equal for $n \geq N$.

