## AoPS Community

## Romania Team Selection Test 2002

www.artofproblemsolving.com/community/c4457
by lomos_lupin, Max D.R., Valiowk, grobber, WakeUp, Maverick, nhat

## Day 1

$1 \quad$ Find all sets $A$ and $B$ that satisfy the following conditions:
a) $A \cup B=\mathbb{Z}$;
b) if $x \in A$ then $x-1 \in B$;
c) if $x, y \in B$ then $x+y \in A$.

## Laurentiu Panaitopol

2 The sequence $\left(a_{n}\right)$ is defined by: $a_{0}=a_{1}=1$ and $a_{n+1}=14 a_{n}-a_{n-1}$ for all $n \geq 1$. Prove that $2 a_{n}-1$ is a perfect square for any $n \geq 0$.
$3 \quad$ Let $M$ and $N$ be the midpoints of the respective sides $A B$ and $A C$ of an acute-angled triangle $A B C$. Let $P$ be the foot of the perpendicular from $N$ onto $B C$ and let $A_{1}$ be the midpoint of $M P$. Points $B_{1}$ and $C_{1}$ are obtained similarly. If $A A_{1}, B B_{1}$ and $C C_{1}$ are concurrent, show that the triangle $A B C$ is isosceles.

## Mircea Becheanu

4 For any positive integer $n$, let $f(n)$ be the number of possible choices of signs + or - in the algebraic expression $\pm 1 \pm 2 \ldots \pm n$, such that the obtained sum is zero. Show that $f(n)$ satisfies the following conditions:
a) $f(n)=0$ for $n=1(\bmod 4)$ or $n=2(\bmod 4)$.
b) $2^{\frac{n}{2}-1} \leq f(n) \leq 2^{n}-2^{\left\lfloor\frac{n}{2}\right\rfloor+1}$, for $n=0(\bmod 4)$ or $n=3(\bmod 4)$.

Ioan Tomsecu

## Day 2

1 Let $A B C D$ be a unit square. For any interior points $M, N$ such that the line $M N$ does not contain a vertex of the square, we denote by $s(M, N)$ the least area of the triangles having their vertices in the set of points $\{A, B, C, D, M, N\}$. Find the least number $k$ such that $s(M, N) \leq k$, for all points $M, N$.

Dinu erbnescu

2 Let $P(x)$ and $Q(x)$ be integer polynomials of degree $p$ and $q$ respectively. Assume that $P(x)$ divides $Q(x)$ and all their coefficients are either 1 or 2002. Show that $p+1$ is a divisor of $q+1$.

## Mihai Cipu

3 Let $a, b$ be positive real numbers. For any positive integer $n$, denote by $x_{n}$ the sum of digits of the number $[a n+b]$ in it's decimal representation. Show that the sequence $\left(x_{n}\right)_{n \geq 1}$ contains a constant subsequence.

## Laurentiu Panaitopol

4 At an international conference there are four official languages. Any two participants can speak in one of these languages. Show that at least $60 \%$ of the participants can speak the same language.
Mihai Baluna

## Day 3

1 Let $A B C D E$ be a cyclic pentagon inscribed in a circle of centre $O$ which has angles $\angle B=$ $120^{\circ}, \angle C=120^{\circ}, \angle D=130^{\circ}, \angle E=100^{\circ}$. Show that the diagonals $B D$ and $C E$ meet at a point belonging to the diameter $A O$.

## Dinu erbnescu

2 Let $n \geq 4$ be an integer, and let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers such that

$$
a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}=1 .
$$

Prove that the following inequality takes place

$$
\frac{a_{1}}{a_{2}^{2}+1}+\cdots+\frac{a_{n}}{a_{1}^{2}+1} \geq \frac{4}{5}\left(a_{1} \sqrt{a_{1}}+\cdots+a_{n} \sqrt{a_{n}}\right)^{2} .
$$

## Bogdan Enescu, Mircea Becheanu

$3 \quad$ Let $n$ be a positive integer. $S$ is the set of nonnegative integers $a$ such that $1<a<n$ and $a^{a-1}-1$ is divisible by $n$. Prove that if $S=\{n-1\}$ then $n=2 p$ where $p$ is a prime number.
Mihai Cipu and Nicolae Ciprian Bonciocat
4 Let $f: \mathbb{Z} \rightarrow\{1,2, \ldots, n\}$ be a function such that $f(x) \neq f(y)$, for all $x, y \in \mathbb{Z}$ such that $|x-y| \in\{2,3,5\}$. Prove that $n \geq 4$.
Ioan Tomescu

## Day 4

## AoPS Community

## 2002 Romania Team Selection Test

1 Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of positive integers defined as $a_{1}, a_{2}>0$ and $a_{n+1}$ is the least prime divisor of $a_{n-1}+a_{n}$, for all $n \geq 2$.

Prove that a real number $x$ whose decimals are digits of the numbers $a_{1}, a_{2}, \ldots a_{n}, \ldots$ written in order, is a rational number.

Laurentiu Panaitopol
2 Find the least positive real number $r$ with the following property:
Whatever four disks are considered, each with centre on the edges of a unit square and the sum of their radii equals $r$, there exists an equilateral triangle which has its edges in three of the disks.

Radu Gologan
3 After elections, every parliament member (PM), has his own absolute rating. When the parliament set up, he enters in a group and gets a relative rating. The relative rating is the ratio of its own absolute rating to the sum of all absolute ratings of the PMs in the group. A PM can move from one group to another only if in his new group his relative rating is greater. In a given day, only one PM can change the group. Show that only a finite number of group moves is possible.
(A rating is positive real number.)

## Day 5

1 Let $m, n$ be positive integers of distinct parities and such that $m<n<5 m$. Show that there exists a partition with two element subsets of the set $\{1,2,3, \ldots, 4 m n\}$ such that the sum of numbers in each set is a perfect square.
Dinu erbnescu
2 Let $A B C$ be a triangle such that $A C \neq B C, A B<A C$ and let $K$ be it's circumcircle. The tangent to $K$ at the point $A$ intersects the line $B C$ at the point $D$. Let $K_{1}$ be the circle tangent to $K$ and to the segments $(A D),(B D)$. We denote by $M$ the point where $K_{1}$ touches $(B D)$. Show that $A C=M C$ if and only if $A M$ is the bisector of the $\angle D A B$.

Neculai Roman
3 There are $n$ players, $n \geq 2$, which are playing a card game with $n p$ cards in $p$ rounds. The cards are coloured in $n$ colours and each colour is labelled with the numbers $1,2, \ldots, p$. The game submits to the following rules:
each player receives $p$ cards.
the player who begins the first round throws a card and each player has to discard a card of the same colour, if he has one; otherwise they can give an arbitrary card.
the winner of the round is the player who has put the greatest card of the same colour as the
first one.
the winner of the round starts the next round with a card that he selects and the play continues with the same rules.
the played cards are out of the game.
Show that if all cards labelled with number 1 are winners, then $p \geq 2 n$.

## Barbu Berceanu

