AoPS Community

Romania Team Selection Test 2005

www.artofproblemsolving.com/community/c4460
by Valentin Vornicu, grobber

Day 1 March 31st

1 Solve the equation $3^{x}=2^{x} y+1$ in positive integers.
2 Let $n \geq 1$ be an integer and let X be a set of $n^{2}+1$ positive integers such that in any subset of X with $n+1$ elements there exist two elements $x \neq y$ such that $x \mid y$. Prove that there exists a subset $\left\{x_{1}, x_{2}, \ldots, x_{n+1}\right\} \in X$ such that $x_{i} \mid x_{i+1}$ for all $i=1,2, \ldots, n$.

3 Prove that if the distance from a point inside a convex polyhedra with n faces to the vertices of the polyhedra is at most 1 , then the sum of the distances from this point to the faces of the polyhedra is smaller than $n-2$.

Calin Popescu

Day 2 April 1st

1 Prove that in any convex polygon with $4 n+2$ sides ($n \geq 1$) there exist two consecutive sides which form a triangle of area at most $\frac{1}{6 n}$ of the area of the polygon.

2 Let m, n be co-prime integers, such that m is even and n is odd. Prove that the following expression does not depend on the values of m and n :

$$
\frac{1}{2 n}+\sum_{k=1}^{n-1}(-1)^{\left[\frac{m k}{n}\right]}\left\{\frac{m k}{n}\right\}
$$

Bogdan Enescu

3 A sequence of real numbers $\left\{a_{n}\right\}_{n}$ is called a bs sequence if $a_{n}=\left|a_{n+1}-a_{n+2}\right|$, for all $n \geq 0$. Prove that a bs sequence is bounded if and only if the function f given by $f(n, k)=a_{n} a_{k}\left(a_{n}-\right.$ a_{k}), for all $n, k \geq 0$ is the null function.

Mihai Baluna - ISL 2004
Day 3 April 19th

1 Let $A_{0} A_{1} A_{2} A_{3} A_{4} A_{5}$ be a convex hexagon inscribed in a circle. Define the points $A_{0}^{\prime}, A_{2}^{\prime}, A_{4}^{\prime}$ on the circle, such that

$$
A_{0} A_{0}^{\prime}\left\|A_{2} A_{4}, \quad A_{2} A_{2}^{\prime}\right\| A_{4} A_{0}, \quad A_{4} A_{4}^{\prime} \| A_{2} A_{0}
$$

Let the lines $A_{0}^{\prime} A_{3}$ and $A_{2} A_{4}$ intersect in A_{3}^{\prime}, the lines $A_{2}^{\prime} A_{5}$ and $A_{0} A_{4}$ intersect in A_{5}^{\prime} and the lines $A_{4}^{\prime} A_{1}$ and $A_{0} A_{2}$ intersect in A_{1}^{\prime}.

Prove that if the lines $A_{0} A_{3}, A_{1} A_{4}$ and $A_{2} A_{5}$ are concurrent then the lines $A_{0} A_{3}^{\prime}, A_{4} A_{1}^{\prime}$ and $A_{2} A_{5}^{\prime}$ are also concurrent.

2 Let $A B C$ be a triangle, and let D, E, F be 3 points on the sides $B C, C A$ and $A B$ respectively, such that the inradii of the triangles $A E F, B D F$ and $C D E$ are equal with half of the inradius of the triangle $A B C$. Prove that D, E, F are the midpoints of the sides of the triangle $A B C$.

3 Let P be a polygon (not necessarily convex) with n vertices, such that all its sides and diagonals are less or equal with 1 in length. Prove that the area of the polygon is less than $\frac{\sqrt{3}}{2}$.

Day 4 May 23rd
1 Let $a \in \mathbb{R}-\{0\}$. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(a+x)=f(x)-x$ for all $x \in \mathbb{R}$.

Dan Schwartz

2 On the edges of a convex polyhedra we draw arrows such that from each vertex at least an arrow is pointing in and at least one is pointing out.
Prove that there exists a face of the polyhedra such that the arrows on its edges form a circuit.
Dan Schwartz
3 Let $n \geq 0$ be an integer and let $p \equiv 7(\bmod 8)$ be a prime number. Prove that

$$
\sum_{k=1}^{p-1}\left\{\frac{k^{2^{n}}}{p}-\frac{1}{2}\right\}=\frac{p-1}{2}
$$

Clin Popescu

4 a) Prove that there exists a sequence of digits $\left\{c_{n}\right\}_{n \geq 1}$ such that or each $n \geq 1$ no matter how we interlace k_{n} digits, $1 \leq k_{n} \leq 9$, between c_{n} and c_{n+1}, the infinite sequence thus obtained does not represent the fractional part of a rational number.
b) Prove that for $1 \leq k_{n} \leq 10$ there is no such sequence $\left\{c_{n}\right\}_{n \geq 1}$.

Dan Schwartz

Day 5 May 24th

1 On a 2004×2004 chess table there are 2004 queens such that no two are attacking each other ${ }^{1}$.
Prove that there exist two queens such that in the rectangle in which the center of the squares on which the queens lie are two opposite corners, has a semiperimeter of 2004.

2 Let $n \geq 2$ be an integer. Find the smallest real value $\rho(n)$ such that for any $x_{i}>0, i=1,2, \ldots, n$ with $x_{1} x_{2} \cdots x_{n}=1$, the inequality

$$
\sum_{i=1}^{n} \frac{1}{x_{i}} \leq \sum_{i=1}^{n} x_{i}^{r}
$$

is true for all $r \geq \rho(n)$.
$3 \quad$ Let $\mathbb{N}=\{1,2, \ldots\}$. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for all $m, n \in \mathbb{N}$ the number $f^{2}(m)+$ $f(n)$ is a divisor of $\left(m^{2}+n\right)^{2}$.

4 We consider a polyhedra which has exactly two vertices adjacent with an odd number of edges, and these two vertices are lying on the same edge.

Prove that for all integers $n \geq 3$ there exists a face of the polyhedra with a number of sides not divisible by n.

[^0]
[^0]: ${ }^{1}$ two queens attack each other if they lie on the same row, column or direction parallel with on of the main diagonals of the table

