

AoPS Community

2006 Romania Team Selection Test

Romania Team Selection Test 2006

www.artofproblemsolving.com/community/c4461

by Valentin Vornicu, perfect_radio, Severius, ZetaX, Nima Ahmadi Pour, Sailor, hungkhtn, Number1, abdurashidjon, ciprian

Day 1 April 19th

1 Let ABC and AMN be two similar triangles with the same orientation, such that AB = AC, AM = AN and having disjoint interiors. Let O be the circumcenter of the triangle MAB. Prove that the points O, C, N, A lie on the same circle if and only if the triangle ABC is equilateral.

Valentin Vornicu

2 Let p a prime number, $p \ge 5$. Find the number of polynomials of the form

$$x^{p} + px^{k} + px^{l} + 1, \quad k > l, \quad k, l \in \{1, 2, \dots, p-1\},\$$

which are irreducible in $\mathbb{Z}[X]$.

Valentin Vornicu

4 The real numbers a_1, a_2, \ldots, a_n are given such that $|a_i| \le 1$ for all $i = 1, 2, \ldots, n$ and $a_1 + a_2 + \cdots + a_n = 0$.

a) Prove that there exists $k \in \{1, 2, ..., n\}$ such that

$$|a_1 + 2a_2 + \dots + ka_k| \le \frac{2k+1}{4}.$$

b) Prove that for n > 2 the bound above is the best possible.

Radu Gologan, Dan Schwarz

Day 2 April 20th

1 Let $\{a_n\}_{n\geq 1}$ be a sequence with $a_1 = 1$, $a_2 = 4$ and for all n > 1,

$$a_n = \sqrt{a_{n-1}a_{n+1} + 1}.$$

a) Prove that all the terms of the sequence are positive integers.

b) Prove that $2a_na_{n+1} + 1$ is a perfect square for all positive integers *n*.

Valentin Vornicu

AoPS Community

2006 Romania Team Selection Test

2 Let *ABC* be a triangle with $\angle B = 30^{\circ}$. We consider the closed disks of radius $\frac{AC}{3}$, centered in *A*, *B*, *C*. Does there exist an equilateral triangle with one vertex in each of the 3 disks?

Radu Gologan, Dan Schwarz

3 For which pairs of positive integers (m, n) there exists a set A such that for all positive integers x, y, if |x - y| = m, then at least one of the numbers x, y belongs to the set A, and if |x - y| = n, then at least one of the numbers x, y does not belong to the set A?

Adapted by Dan Schwarz from A.M.M.

4 Let x_i , $1 \le i \le n$ be real numbers. Prove that

$$\sum_{1 \le i < j \le n} |x_i + x_j| \ge \frac{n-2}{2} \sum_{i=1}^n |x_i|.$$

Discrete version by Dan Schwarz of a Putnam problem

Day 3 May 16th

- **1** The circle of center *I* is inscribed in the convex quadrilateral *ABCD*. Let *M* and *N* be points on the segments *AI* and *CI*, respectively, such that $\angle MBN = \frac{1}{2} \angle ABC$. Prove that $\angle MDN = \frac{1}{2} \angle ADC$.
- **2** Let *A* be point in the exterior of the circle *C*. Two lines passing through *A* intersect the circle *C* in points *B* and *C* (with *B* between *A* and *C*) respectively in *D* and *E* (with *D* between *A* and *E*). The parallel from *D* to *BC* intersects the second time the circle *C* in *F*. Let *G* be the second point of intersection between the circle *C* and the line *AF* and *M* the point in which the lines *AB* and *EG* intersect. Prove that

$$\frac{1}{AM} = \frac{1}{AB} + \frac{1}{AC}.$$

3 Let γ be the incircle in the triangle $A_0A_1A_2$. For all $i \in \{0, 1, 2\}$ we make the following constructions (all indices are considered modulo 3): γ_i is the circle tangent to γ which passes through the points A_{i+1} and A_{i+2} ; T_i is the point of tangency between γ_i and γ ; finally, the common tangent in T_i of γ_i and γ intersects the line $A_{i+1}A_{i+2}$ in the point P_i . Prove that

a) the points P_0 , P_1 and P_2 are collinear;

b) the lines A_0T_0 , A_1T_1 and A_2T_2 are concurrent.

4 Let a, b, c be positive real numbers such that a + b + c = 3. Prove that:

$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \ge a^2 + b^2 + c^2.$$

Day 4	May 19th
1	Let r and s be two rational numbers. Find all functions $f : \mathbb{Q} \to \mathbb{Q}$ such that for all $x, y \in \mathbb{Q}$ we have
	f(x+f(y)) = f(x+r) + y + s.
2	Find all non-negative integers m, n, p, q such that
	$p^m q^n = (p+q)^2 + 1.$
3	Let $n > 1$ be an integer. A set $S \subset \{0, 1, 2,, 4n-1\}$ is called <i>rare</i> if, for any $k \in \{0, 1,, n-1\}$ the following two conditions take place at the same time
	(1) the set $S \cap \{4k-2, 4k-1, 4k, 4k+1, 4k+2\}$ has at most two elements;
	(2) the set $S \cap \{4k+1, 4k+2, 4k+3\}$ has at most one element.
	Prove that the set $\{0, 1, 2, \dots, 4n - 1\}$ has exactly $8 \cdot 7^{n-1}$ rare subsets.
4	Let p, q be two integers, $q \ge p \ge 0$. Let $n \ge 2$ be an integer and $a_0 = 0, a_1 \ge 0, a_2, \dots, a_{n-1}, a_n =$ be real numbers such that
	$a_k \le \frac{a_{k-1} + a_{k+1}}{2}, \ \forall \ k = 1, 2, \dots, n-1.$
	Prove that $(p+1)\sum_{k=1}^{n-1}a_k^p \geq (q+1)\sum_{k=1}^{n-1}a_k^q.$
	May 20th

- **1** Let *n* be a positive integer of the form 4k + 1, $k \in \mathbb{N}$ and $A = \{a^2 + nb^2 \mid a, b \in \mathbb{Z}\}$. Prove that there exist integers x, y such that $x^n + y^n \in A$ and $x + y \notin A$.
- **2** Let *m* and *n* be positive integers and *S* be a subset with $(2^m 1)n + 1$ elements of the set $\{1, 2, 3, \ldots, 2^m n\}$. Prove that *S* contains m+1 distinct numbers a_0, a_1, \ldots, a_m such that $a_{k-1} \mid a_k$ for all $k = 1, 2, \ldots, m$.

AoPS Community

2006 Romania Team Selection Test

3 Let $x_1 = 1, x_2, x_3, \dots$ be a sequence of real numbers such that for all $n \ge 1$ we have

$$x_{n+1} = x_n + \frac{1}{2x_n}.$$

Prove that

$$\lfloor 25x_{625} \rfloor = 625.$$

4 Let ABC be an acute triangle with $AB \neq AC$. Let D be the foot of the altitude from A and ω the circumcircle of the triangle. Let ω_1 be the circle tangent to AD, BD and ω . Let ω_2 be the circle tangent to AD, CD and ω . Let ℓ be the interior common tangent to both ω_1 and ω_2 , different from AD.

Prove that ℓ passes through the midpoint of BC if and only if 2BC = AB + AC.

AoPS Online 🔯 AoPS Academy 🙋 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.