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1 An acute triangle ABC with AB < AC < BC is inscribed in a circle ¢(O, R). The circle
c1(A, AC) intersects the circle c at point D and intersects CB at E. If the line AE intersects ¢
at F and G lies in BC such that EB = BG, prove that F', E, D, G are concyclic.

2 Let A be a point in the plane and 3 lines which pass through this point divide the plane in 6
regions.
In each region there are 5 points. We know that no three of the 30 points existing in these
regions are collinear. Prove that there exist at least 1000 triangles whose vertices are points of
those regions such that A lies either in the interior or on the side of the triangle.

3 Find all integer triples (a, b, ¢) with a > 0 > b > ¢ whose sum equal 0 such that the number
N =2017 — a®b — b3c — Pa

is a perfect square of an integer.

4 Let u be the positive root of the equation 22 + 2 — 4 = 0. The polynomial
P(z) = apz™ + 12" 4 ...+ ag

where n is positive integer has non-negative integer coefficients and P(u) = 2017.
1) Prove that ag +a; + ... + a, =1 mod 2.
2) Find the minimum possible value of ag + a1 + ... + ay.
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