AoPS Community

Romania Team Selection Test 2010

www.artofproblemsolving.com/community/c4465
by mavropnevma

- TST 1

1 Given an integer number $n \geq 3$, consider n distinct points on a circle, labelled 1 through n. Determine the maximum number of closed chords $[i j], i \neq j$, having pairwise non-empty intersections.

Jnos Pach
2 Let n be a positive integer number and let $a_{1}, a_{2}, \ldots, a_{n}$ be n positive real numbers. Prove that $f:[0, \infty) \rightarrow \mathbb{R}$, defined by

$$
f(x)=\frac{a_{1}+x}{a_{2}+x}+\frac{a_{2}+x}{a_{3}+x}+\cdots+\frac{a_{n-1}+x}{a_{n}+x}+\frac{a_{n}+x}{a_{1}+x},
$$

is a decreasing function.
Dan Marinescu et al.
3 Two rectangles of unit area overlap to form a convex octagon. Show that the area of the octagon is at least $\frac{1}{2}$.
Kvant Magazine
$4 \quad$ Two circles in the plane, γ_{1} and γ_{2}, meet at points M and N. Let A be a point on γ_{1}, and let D be a point on γ_{2}. The lines $A M$ and $A N$ meet again γ_{2} at points B and C, respectively, and the lines $D M$ and $D N$ meet again γ_{1} at points E and F, respectively. Assume the order M, N, F, A, E is circular around γ_{1}, and the segments $A B$ and $D E$ are congruent. Prove that the points A, F, C and D lie on a circle whose centre does not depend on the position of the points A and D on the respective circles, subject to the assumptions above.
$5 \quad$ Let a and n be two positive integer numbers such that the (positive) prime factors of a be all greater than n.
Prove that n ! divides $(a-1)\left(a^{2}-1\right) \cdots\left(a^{n-1}-1\right)$.
AMM Magazine

- TST 2

AoPS Community

2010 Romania Team Selection Test

1 Given a positive integer number n, determine the minimum of

$$
\max \left\{\frac{x_{1}}{1+x_{1}}, \frac{x_{2}}{1+x_{1}+x_{2}}, \cdots, \frac{x_{n}}{1+x_{1}+x_{2}+\cdots+x_{n}}\right\}
$$

as $x_{1}, x_{2}, \ldots, x_{n}$ run through all non-negative real numbers which add up to 1 .
Kvant Magazine
2 (a) Given a positive integer k, prove that there do not exist two distinct integers in the open interval $\left(k^{2},(k+1)^{2}\right)$ whose product is a perfect square.
(b) Given an integer $n>2$, prove that there exist n distinct integers in the open interval ($k^{n},(k+$ 1) ${ }^{n}$) whose product is the n-th power of an integer, for all but a finite number of positive integers k.

AMM Magazine

3 Let γ_{1} and γ_{2} be two circles tangent at point T, and let ℓ_{1} and ℓ_{2} be two lines through T. The lines ℓ_{1} and ℓ_{2} meet again γ_{1} at points A and B, respectively, and γ_{2} at points A_{1} and B_{1}, respectively. Let further X be a point in the complement of $\gamma_{1} \cup \gamma_{2} \cup \ell_{1} \cup \ell_{2}$. The circles $A T X$ and $B T X$ meet again γ_{2} at points A_{2} and B_{2}, respectively. Prove that the lines $T X, A_{1} B_{2}$ and $A_{2} B_{1}$ are concurrent.

4 Let n be an integer number greater than or equal to 2 , and let K be a closed convex set of area greater than or equal to n, contained in the open square $(0, n) \times(0, n)$. Prove that K contains some point of the integral lattice $\mathbb{Z} \times \mathbb{Z}$.

Marius Cavachi

- TST 3

1 Let n be a positive integer and let $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers such that $x_{1} x_{2} \cdots x_{n}=$ 1. Prove that

$$
\sum_{i=1}^{n} x_{i}^{n}\left(1+x_{i}\right) \geq \frac{n}{2^{n-1}} \prod_{i=1}^{n}\left(1+x_{i}\right)
$$

IMO Shortlist
2 Let $A B C$ be a triangle such that $A B \neq A C$. The internal bisector lines of the angles $A B C$ and $A C B$ meet the opposite sides of the triangle at points B_{0} and C_{0}, respectively, and the circumcircle $A B C$ at points B_{1} and C_{1}, respectively. Further, let I be the incentre of the triangle $A B C$. Prove that the lines $B_{0} C_{0}$ and $B_{1} C_{1}$ meet at some point lying on the parallel through I to the line $B C$.

Radu Gologan

AoPS Community

3 Given a positive integer a, prove that $\sigma(a m)<\sigma(a m+1)$ for infinitely many positive integers m. (Here $\sigma(n)$ is the sum of all positive divisors of the positive integer number n.)

Vlad Matei

4 Let X and Y be two finite subsets of the half-open interval $[0,1)$ such that $0 \in X \cap Y$ and $x+y=1$ for no $x \in X$ and no $y \in Y$. Prove that the set $\{x+y-\lfloor x+y\rfloor: x \in X$ and $y \in Y\}$ has at least $|X|+|Y|-1$ elements.

- \quad TST 4 (All Geometry)

1 Let P be a point in the plane and let γ be a circle which does not contain P. Two distinct variable lines ℓ and ℓ^{\prime} through P meet the circle γ at points X and Y, and X^{\prime} and Y^{\prime}, respectively. Let M and N be the antipodes of P in the circles $P X X^{\prime}$ and $P Y Y^{\prime}$, respectively. Prove that the line $M N$ passes through a fixed point.

Mihai Chis

2 Let $A B C$ be a scalene triangle. The tangents at the perpendicular foot dropped from A on the line $B C$ and the midpoint of the side $B C$ to the nine-point circle meet at the point A^{\prime}; the points B^{\prime} and C^{\prime} are defined similarly. Prove that the lines $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ are concurrent.

Gazeta Matematica

$3 \quad$ Let \mathcal{L} be a finite collection of lines in the plane in general position (no two lines in \mathcal{L} are parallel and no three are concurrent). Consider the open circular discs inscribed in the triangles enclosed by each triple of lines in \mathcal{L}. Determine the number of such discs intersected by no line in \mathcal{L}, in terms of $|\mathcal{L}|$.

B. Aronov et al.

- TST 5

1 Each point of the plane is coloured in one of two colours. Given an odd integer number $n \geq 3$, prove that there exist (at least) two similar triangles whose similitude ratio is n, each of which has a monochromatic vertex-set.

Vasile Pop

2 Let ℓ be a line, and let γ and γ^{\prime} be two circles. The line ℓ meets γ at points A and B, and γ^{\prime} at points A^{\prime} and B^{\prime}. The tangents to γ at A and B meet at point C, and the tangents to γ^{\prime} at A^{\prime} and B^{\prime} meet at point C^{\prime}. The lines ℓ and $C C^{\prime}$ meet at point P. Let λ be a variable line through
P and let X be one of the points where λ meets γ, and X^{\prime} be one of the points where λ meets γ^{\prime}. Prove that the point of intersection of the lines $C X$ and $C^{\prime} X^{\prime}$ lies on a fixed circle.

Gazeta Matematica

3 Let p be a prime number,let $n_{1}, n_{2}, \ldots, n_{p}$ be positive integer numbers, and let d be the greatest common divisor of the numbers $n_{1}, n_{2}, \ldots, n_{p}$. Prove that the polynomial

$$
\frac{X^{n_{1}}+X^{n_{2}}+\cdots+X^{n_{p}}-p}{X^{d}-1}
$$

is irreducible in $\mathbb{Q}[X]$.

Beniamin Bogosel

- TST 6

1 A nonconstant polynomial f with integral coefficients has the property that, for each prime p, there exist a prime q and a positive integer m such that $f(p)=q^{m}$. Prove that $f=X^{n}$ for some positive integer n.

AMM Magazine

2 Let $A B C$ be a scalene triangle, let I be its incentre, and let A_{1}, B_{1} and C_{1} be the points of contact of the excircles with the sides $B C, C A$ and $A B$, respectively. Prove that the circumcircles of the triangles $A I A_{1}, B I B_{1}$ and $C I C_{1}$ have a common point different from I.

Cezar Lupu \& Vlad Matei

3 Let n be a positive integer number. If S is a finite set of vectors in the plane, let $N(S)$ denote the number of two-element subsets $\left\{\mathbf{v}, \mathbf{v}^{\prime}\right\}$ of S such that

$$
4\left(\mathbf{v} \cdot \mathbf{v}^{\prime}\right)+\left(|\mathbf{v}|^{2}-1\right)\left(\left|\mathbf{v}^{\prime}\right|^{2}-1\right)<0
$$

Determine the maximum of $N(S)$ when S runs through all n-element sets of vectors in the plane.

