

2011 Romania Team Selection Test

Romania Team Selection Test 2011

www.artofproblemsolving.com/community/c4466

by littletush, WakeUp, abconjecture, goodar2006, frenchy, Spasty, Amir Hossein, horizon, Hooksway

Day 1						
1	Determine all real-valued functions f on the set of real numbers satisfying					
2f(x) = f(x+y) + f(x+2y)						
	for all real numbers x and all non-negative real numbers y .					
2	Prove that the set $S = \{\lfloor n\pi \rfloor \mid n = 0, 1, 2, 3,\}$ contains arithmetic progressions of any finite length, but no infinite arithmetic progressions.					
	Vasile Pop					
3	Let ABC be a triangle such that $AB < AC$. The perpendicular bisector of the side BC meets the side AC at the point D , and the (interior) bisectrix of the angle ADB meets the circumcircle ABC at the point E . Prove that the (interior) bisectrix of the angle AEB and the line through the incentres of the triangles ADE and BDE are perpendicular.					
4	Given an integer $n \ge 2$, compute $\sum_{\sigma} \operatorname{sgn}(\sigma) n^{\ell(\sigma)}$, where all <i>n</i> -element permutations are considered, and where $\ell(\sigma)$ is the number of disjoint cycles in the standard decomposition of σ .					
Day 2						
1	Suppose a square of sidelengh l is inside an unit square and does not contain its centre. Show that $l \le 1/2$.					
	Marius Cavachi					
2	In triangle ABC , the incircle touches sides BC , CA and AB in D , E and F respectively. Let X be the feet of the altitude of the vertex D on side EF of triangle DEF . Prove that AX , BY and CZ are concurrent on the Euler line of the triangle DEF .					
3	Given a positive integer number n , determine the maximum number of edges a simple graph on n vertices may have such that it contain no cycles of even length.					
4	Show that: a) There are infinitely many positive integers n such that there exists a square equal to the sum of the squares of n consecutive positive integers (for instance, 2 is one such number as					

2011 Romania Team Selection Test

 $5^2 = 3^2 + 4^2$).

b) If n is a positive integer which is not a perfect square, and if x is an integer number such that $x^2 + (x+1)^2 + ... + (x+n-1)^2$ is a perfect square, then there are infinitely many positive integers y such that $y^2 + (y+1)^2 + ... + (y+n-1)^2$ is a perfect square.

Day 3	3					
1	Let $ABCD$ be a cyclic quadrilateral which is not a trapezoid and whose diagonals meet at E . The midpoints of AB and CD are F and G respectively, and ℓ is the line through G parallel to AB . The feet of the perpendiculars from E onto the lines ℓ and CD are H and K , respectively. Prove that the lines EF and HK are perpendicular.					
2	Given real numbers x, y, z such that $x + y + z = 0$, show that					
	$\frac{x(x+2)}{2x^2+1} + \frac{y(y+2)}{2y^2+1} + \frac{z(z+2)}{2z^2+1} \ge 0$					

When does equality hold?

- **3** Let *S* be a finite set of positive integers which has the following property: if *x* is a member of *S*, then so are all positive divisors of *x*. A non-empty subset *T* of *S* is *good* if whenever $x, y \in T$ and x < y, the ratio y/x is a power of a prime number. A non-empty subset *T* of *S* is *bad* if whenever $x, y \in T$ and x < y, the ratio y/x is not a power of a prime number. A set of an element is considered both *good* and *bad*. Let *k* be the largest possible size of a *good* subset of *S*. Prove that *k* is also the smallest number of pairwise-disjoint *bad* subsets whose union is *S*.
- **4** Let *ABCDEF* be a convex hexagon of area 1, whose opposite sides are parallel. The lines *AB*, *CD* and *EF* meet in pairs to determine the vertices of a triangle. Similarly, the lines *BC*, *DE* and *FA* meet in pairs to determine the vertices of another triangle. Show that the area of at least one of these two triangles is at least 3/2.

Day 4	1
1	Let $ABCD$ be a cyclic quadrilateral. The lines BC and AD meet at a point P . Let Q be the point on the line BP , different from B , such that $PQ = BP$. Consider the parallelograms $CAQR$ and DBCS. Prove that the points C, Q, R, S lie on a circle.
2	Let $ABCD$ be a convex quadrangle such that $AB = AC = BD$ (vertices are labelled in circular order). The lines AC and BD meet at point O , the circles ABC and ADO meet again at point P , and the lines AP and BC meet at the point Q . Show that the angles COQ and DOQ are equal.

2011 Romania Team Selection Test

3 Given a triangle ABC, let D be the midpoint of the side AC and let M be the point that divides the segment BD in the ratio 1/2; that is, MB/MD = 1/2. The rays AM and CM meet the sides BC and AB at points E and F, respectively. Assume the two rays perpendicular. $AM \perp CM$. Show that the quadrangle AFED is cyclic if and only if the median from A in triangle ABC meets the line EF at a point situated on the circle ABC.

Day 5			

- 1 Show that there are infinitely many positive integer numbers n such that n^2+1 has two positive divisors whose difference is n.
- **2** Let *n* be an integer number greater than 2, let x_1, x_2, \ldots, x_n be *n* positive real numbers such that

$$\sum_{i=1}^{n} \frac{1}{x_i + 1} = 1$$

and let k be a real number greater than 1. Show that:

$$\sum_{i=1}^n \frac{1}{x_i^k + 1} \geq \frac{n}{(n-1)^k + 1}$$

and determine the cases of equality.

3 Given a set *L* of lines in general position in the plane (no two lines in *L* are parallel, and no three lines are concurrent) and another line ℓ , show that the total number of edges of all faces in the corresponding arrangement, intersected by ℓ , is at most 6|L|.

Chazelle et al., Edelsbrunner et al.

Day 6

1 Given a positive integer number *k*, define the function *f* on the set of all positive integer numbers to itself by

$$f(n) = \begin{cases} 1, & \text{if } n \le k+1\\ f(f(n-1)) + f(n-f(n-1)), & \text{if } n > k+1 \end{cases}$$

Show that the preimage of every positive integer number under f is a finite non-empty set of consecutive positive integers.

2 Given a prime number p congruent to 1 modulo 5 such that 2p + 1 is also prime, show that there exists a matrix of 0s and 1s containing exactly 4p (respectively, 4p + 2) 1s no sub-matrix of which contains exactly 2p (respectively, 2p + 1) 1s.

2011 Romania Team Selection Test

3 The incircle of a triangle *ABC* touches the sides *BC*, *CA*, *AB* at points *D*, *E*, *F*, respectively. Let *X* be a point on the incircle, different from the points *D*, *E*, *F*. The lines *XD* and *EF*, *XE* and *FD*, *XF* and *DE* meet at points *J*, *K*, *L*, respectively. Let further *M*, *N*, *P* be points on the sides *BC*, *CA*, *AB*, respectively, such that the lines *AM*, *BN*, *CP* are concurrent. Prove that the lines *JM*, *KN* and *LP* are concurrent.

Dinu Serbanescu

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.