Art of Problem Solving

AoPS Community

Romania Team Selection Test 2011

www.artofproblemsolving.com/community/c4466
by littletush, WakeUp, abconjecture, goodar2006, frenchy, Spasty, Amir Hossein, horizon, Hooksway

Day 1

1 Determine all real-valued functions f on the set of real numbers satisfying

$$
2 f(x)=f(x+y)+f(x+2 y)
$$

for all real numbers x and all non-negative real numbers y.
2 Prove that the set $S=\{\lfloor n \pi\rfloor \mid n=0,1,2,3, \ldots\}$ contains arithmetic progressions of any finite length, but no infinite arithmetic progressions.

Vasile Pop

3 Let $A B C$ be a triangle such that $A B<A C$. The perpendicular bisector of the side $B C$ meets the side $A C$ at the point D, and the (interior) bisectrix of the angle $A D B$ meets the circumcircle $A B C$ at the point E. Prove that the (interior) bisectrix of the angle $A E B$ and the line through the incentres of the triangles $A D E$ and $B D E$ are perpendicular.

4 Given an integer $n \geq 2$, compute $\sum_{\sigma} \operatorname{sgn}(\sigma) n^{\ell(\sigma)}$, where all n-element permutations are considered, and where $\ell(\sigma)$ is the number of disjoint cycles in the standard decomposition of σ.

Day 2

1 Suppose a square of sidelengh l is inside an unit square and does not contain its centre. Show that $l \leq 1 / 2$.

Marius Cavachi

2 In triangle $A B C$, the incircle touches sides $B C, C A$ and $A B$ in D, E and F respectively. Let X be the feet of the altitude of the vertex D on side $E F$ of triangle $D E F$. Prove that $A X, B Y$ and $C Z$ are concurrent on the Euler line of the triangle $D E F$.

3 Given a positive integer number n, determine the maximum number of edges a simple graph on n vertices may have such that it contain no cycles of even length.

4 Show that:

a) There are infinitely many positive integers n such that there exists a square equal to the sum of the squares of n consecutive positive integers (for instance, 2 is one such number as

AoPS Community

2011 Romania Team Selection Test

$$
\left.5^{2}=3^{2}+4^{2}\right)
$$

b) If n is a positive integer which is not a perfect square, and if x is an integer number such that $x^{2}+(x+1)^{2}+\ldots+(x+n-1)^{2}$ is a perfect square, then there are infinitely many positive integers y such that $y^{2}+(y+1)^{2}+\ldots+(y+n-1)^{2}$ is a perfect square.

Day 3

1 Let $A B C D$ be a cyclic quadrilateral which is not a trapezoid and whose diagonals meet at E. The midpoints of $A B$ and $C D$ are F and G respectively, and ℓ is the line through G parallel to $A B$. The feet of the perpendiculars from E onto the lines ℓ and $C D$ are H and K, respectively. Prove that the lines $E F$ and $H K$ are perpendicular.

2 Given real numbers x, y, z such that $x+y+z=0$, show that

$$
\frac{x(x+2)}{2 x^{2}+1}+\frac{y(y+2)}{2 y^{2}+1}+\frac{z(z+2)}{2 z^{2}+1} \geq 0
$$

When does equality hold?
3 Let S be a finite set of positive integers which has the following property:if x is a member of S,then so are all positive divisors of x. A non-empty subset T of S is good if whenever $x, y \in T$ and $x<y$, the ratio y / x is a power of a prime number. A non-empty subset T of S is bad if whenever $x, y \in T$ and $x<y$, the ratio y / x is not a power of a prime number. A set of an element is considered both good and bad. Let k be the largest possible size of a good subset of S. Prove that k is also the smallest number of pairwise-disjoint bad subsets whose union is S.

4 Let $A B C D E F$ be a convex hexagon of area 1, whose opposite sides are parallel. The lines $A B$, $C D$ and $E F$ meet in pairs to determine the vertices of a triangle. Similarly, the lines $B C, D E$ and $F A$ meet in pairs to determine the vertices of another triangle. Show that the area of at least one of these two triangles is at least $3 / 2$.

Day 4

1 Let $A B C D$ be a cyclic quadrilateral. The lines $B C$ and $A D$ meet at a point P. Let Q be the point on the line $B P$, different from B, such that $P Q=B P$. Consider the parallelograms $C A Q R$ and $D B C S$. Prove that the points C, Q, R, S lie on a circle.

2 Let $A B C D$ be a convex quadrangle such that $A B=A C=B D$ (vertices are labelled in circular order). The lines $A C$ and $B D$ meet at point O, the circles $A B C$ and $A D O$ meet again at point P, and the lines $A P$ and $B C$ meet at the point Q. Show that the angles $C O Q$ and $D O Q$ are equal.

AoPS Community

2011 Romania Team Selection Test

3 Given a triangle $A B C$, let D be the midpoint of the side $A C$ and let M be the point that divides the segment $B D$ in the ratio $1 / 2$; that is, $M B / M D=1 / 2$. The rays $A M$ and $C M$ meet the sides $B C$ and $A B$ at points E and F, respectively. Assume the two rays perpendicular: $A M \perp C M$. Show that the quadrangle $A F E D$ is cyclic if and only if the median from A in triangle $A B C$ meets the line $E F$ at a point situated on the circle $A B C$.

Day 5

1 Show that there are infinitely many positive integer numbers n such that $n^{2}+1$ has two positive divisors whose difference is n.

2 Let n be an integer number greater than 2 , let $x_{1}, x_{2}, \ldots, x_{n}$ be n positive real numbers such that

$$
\sum_{i=1}^{n} \frac{1}{x_{i}+1}=1
$$

and let k be a real number greater than 1 . Show that:

$$
\sum_{i=1}^{n} \frac{1}{x_{i}^{k}+1} \geq \frac{n}{(n-1)^{k}+1}
$$

and determine the cases of equality.
3 Given a set L of lines in general position in the plane (no two lines in L are parallel, and no three lines are concurrent) and another line ℓ, show that the total number of edges of all faces in the corresponding arrangement, intersected by ℓ, is at most $6|L|$.
Chazelle et al., Edelsbrunner et al.

Day 6

1 Given a positive integer number k, define the function f on the set of all positive integer numbers to itself by

$$
f(n)= \begin{cases}1, & \text { if } n \leq k+1 \\ f(f(n-1))+f(n-f(n-1)), & \text { if } n>k+1\end{cases}
$$

Show that the preimage of every positive integer number under f is a finite non-empty set of consecutive positive integers.

2 Given a prime number p congruent to 1 modulo 5 such that $2 p+1$ is also prime, show that there exists a matrix of 0 s and 1 s containing exactly $4 p$ (respectively, $4 p+2$) 1 s no sub-matrix of which contains exactly $2 p$ (respectively, $2 p+1$) 1 s .

3 The incircle of a triangle $A B C$ touches the sides $B C, C A, A B$ at points D, E, F, respectively. Let X be a point on the incircle, different from the points D, E, F. The lines $X D$ and $E F, X E$ and $F D, X F$ and $D E$ meet at points J, K, L, respectively. Let further M, N, P be points on the sides $B C, C A, A B$, respectively, such that the lines $A M, B N, C P$ are concurrent. Prove that the lines $J M, K N$ and $L P$ are concurrent.

Dinu Serbanescu

