AoPS Community

Greece Team Selection Test 2017

www.artofproblemsolving.com/community/c446743
by Borbas

1 Let $A B C$ be an acute-angled triangle inscribed in circle $c(O, R)$ with $A B<A C<B C$, and c_{1} be the inscribed circle of $A B C$ which intersects $A B, A C, B C$ at F, E, D respectivelly. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be points which lie on c such that the quadrilaterals $A E F A^{\prime}, B D F B^{\prime}, C D E C^{\prime}$ are inscribable.
(1) Prove that $D E A^{\prime} B^{\prime}$ is inscribable.
(2) Prove that $D A^{\prime}, E B^{\prime}, F C^{\prime}$ are concurrent.

2 Prove that the number $A=\frac{(4 n)!}{(2 n)!n!}$ is an integer and divisible by 2^{n+1}, where n is a positive integer.

3 Find all fuctions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that: $f(x-3 f(y))=x f(y)-y f(x)+g(x) \forall x, y \in \mathbb{R}$ and $g(1)=-8$

4 Some positive integers are initially written on a board, where each 2 of them are different. Each time we can do the following moves:
(1) If there are 2 numbers (written in the board) in the form $n, n+1$ we can erase them and write down $n-2$
(2) If there are 2 numbers (written in the board) in the form $n, n+4$ we can erase them and write down $n-1$
After some moves, there might appear negative numbers. Find the maximum value of the integer c such that:
Independetly of the starting numbers, each number which appears in any move is greater or equal to c

