Art of Problem Solving

## AoPS Community

## Romania Team Selection Test 2014

www.artofproblemsolving.com/community/c4469
by ComplexPhi, andreiromania, StanleyST

## Day 1

1 Let $A B C$ be a triangle, let $A^{\prime}, B^{\prime}, C^{\prime}$ be the orthogonal projections of the vertices $A, B, C$ on the lines $B C, C A$ and $A B$, respectively, and let $X$ be a point on the line $A A^{\prime}$. Let $\gamma_{B}$ be the circle through $B$ and $X$, centred on the line $B C$, and let $\gamma_{C}$ be the circle through $C$ and $X$, centred on the line $B C$. The circle $\gamma_{B}$ meets the lines $A B$ and $B B^{\prime}$ again at $M$ and $M^{\prime}$, respectively, and the circle $\gamma_{C}$ meets the lines $A C$ and $C C^{\prime}$ again at $N$ and $N^{\prime}$, respectively. Show that the points $M, M^{\prime}, N$ and $N^{\prime}$ are collinear.

2 Let $n \geq 2$ be an integer. Show that there exist $n+1$ numbers $x_{1}, x_{2}, \ldots, x_{n+1} \in \mathbb{Q} \backslash \mathbb{Z}$, so that $\left\{x_{1}^{3}\right\}+\left\{x_{2}^{3}\right\}+\cdots+\left\{x_{n}^{3}\right\}=\left\{x_{n+1}^{3}\right\}$, where $\{x\}$ is the fractionary part of $x$.

3 Let $A_{0} A_{1} A_{2}$ be a scalene triangle. Find the locus of the centres of the equilateral triangles $X_{0} X_{1} X_{2}$, such that $A_{k}$ lies on the line $X_{k+1} X_{k+2}$ for each $k=0,1,2$ (with indices taken modulo 3).

4 Let $k$ be a nonzero natural number and $m$ an odd natural number. Prove that there exist a natural number $n$ such that the number $m^{n}+n^{m}$ has at least $k$ distinct prime factors.

5 Let $n$ be an integer greater than 1 and let $S$ be a finite set containing more than $n+1$ elements. Consider the collection of all sets $A$ of subsets of $S$ satisfying the following two conditions:
(a) Each member of $A$ contains at least $n$ elements of $S$.
(b) Each element of $S$ is contained in at least $n$ members of $A$.

Determine $\max _{A} \min _{B}|B|$, as $B$ runs through all subsets of $A$ whose members cover $S$, and $A$ runs through the above collection.

## Day 2

1 Let $A B C$ be a triangle and let $X, Y, Z$ be interior points on the sides $B C, C A, A B$, respectively. Show that the magnified image of the triangle $X Y Z$ under a homothety of factor 4 from its centroid covers at least one of the vertices $A, B, C$.

2 Let $a$ be a real number in the open interval $(0,1)$. Let $n \geq 2$ be a positive integer and let $f_{n}: \mathbb{R} \rightarrow$

## AoPS Community

$\mathbb{R}$ be defined by $f_{n}(x)=x+\frac{x^{2}}{n}$. Show that

$$
\frac{a(1-a) n^{2}+2 a^{2} n+a^{3}}{(1-a)^{2} n^{2}+a(2-a) n+a^{2}}<\left(f_{n} \circ \cdots \circ f_{n}\right)(a)<\frac{a n+a^{2}}{(1-a) n+a}
$$

where there are $n$ functions in the composition.
3 Determine all positive integers $n$ such that all positive integers less than $n$ and coprime to $n$ are powers of primes.

4 Let $f$ be the function of the set of positive integers into itself, defi ned by $f(1)=1, f(2 n)=f(n)$ and $f(2 n+1)=f(n)+f(n+1)$. Show that, for any positive integer $n$, the number of positive odd integers m such that $f(m)=n$ is equal to the number of positive integers less or equal to $n$ and coprime to $n$.
[mod: the initial statement said less than $n$, which is wrong.]

## Day 3

1 Let $A B C$ be an isosceles triangle, $A B=A C$, and let $M$ and $N$ be points on the sides $B C$ and $C A$, respectively, such that $\angle B A M=\angle C N M$. The lines $A B$ and $M N$ meet at $P$. Show that the internal angle bisectors of the angles $B A M$ and $B P M$ meet at a point on the line $B C$.

2 For every positive integer $n$, let $\sigma(n)$ denote the sum of all positive divisors of $n$ ( 1 and $n$, inclusive). Show that a positive integer $n$, which has at most two distinct prime factors, satisfies the condition $\sigma(n)=2 n-2$ if and only if $n=2^{k}\left(2^{k+1}+1\right)$, where $k$ is a non-negative integer and $2^{k+1}+1$ is prime.

3 Determine the smallest real constant $c$ such that

$$
\sum_{k=1}^{n}\left(\frac{1}{k} \sum_{j=1}^{k} x_{j}\right)^{2} \leq c \sum_{k=1}^{n} x_{k}^{2}
$$

for all positive integers $n$ and all positive real numbers $x_{1}, \cdots, x_{n}$.
4 Let $n$ be a positive integer and let $A_{n}$ respectively $B_{n}$ be the set of nonnegative integers $k<n$ such that the number of distinct prime factors of $\operatorname{gcd}(n, k)$ is even (respectively odd). Show that $\left|A_{n}\right|=\left|B_{n}\right|$ if $n$ is even and $\left|A_{n}\right|>\left|B_{n}\right|$ if $n$ is odd.

Example: $A_{10}=\{0,1,3,7,9\}, B_{10}=\{2,4,5,6,8\}$.

## Day 4

## AoPS Community

## 2014 Romania Team Selection Test

1 Let $\triangle A B C$ be an acute triangle of circumcentre $O$. Let the tangents to the circumcircle of $\triangle A B C$ in points $B$ and $C$ meet at point $P$. The circle of centre $P$ and radius $P B=P C$ meets the internal angle bisector of $\angle B A C$ inside $\triangle A B C$ at point $S$, and $O S \cap B C=D$. The projections of $S$ on $A C$ and $A B$ respectively are $E$ and $F$. Prove that $A D, B E$ and $C F$ are concurrent.

## Author: Cosmin Pohoata

2 Let $p$ be an odd prime number. Determine all pairs of polynomials $f$ and $g$ from $\mathbb{Z}[X]$ such that

$$
f(g(X))=\sum_{k=0}^{p-1} X^{k}=\Phi_{p}(X) .
$$

3 Let $n \in \mathbb{N}$ and $S_{n}$ the set of all permutations of $\{1,2,3, \ldots, n\}$. For every permutation $\sigma \in S_{n}$ denote $I(\sigma):=\{i: \sigma(i) \leq i\}$.
Compute the sum $\sum_{\sigma \in S_{n}} \frac{1}{|I(\sigma)|} \sum_{i \in I(\sigma)}(i+\sigma(i))$.

## Day 5

1 Let $A B C$ a triangle and $O$ his circumcentre. The lines $O A$ and $B C$ intersect each other at $M$; the points $N$ and $P$ are defined in an analogous way. The tangent line in $A$ at the circumcircle of triangle $A B C$ intersect $N P$ in the point $X$; the points $Y$ and $Z$ are defined in an analogous way.Prove that the points $X, Y$ and $Z$ are collinear.

2 Let $m$ be a positive integer and let $A$, respectively $B$, be two alphabets with $m$, respectively $2 m$ letters. Let also $n$ be an even integer which is at least $2 m$. Let $a_{n}$ be the number of words of length $n$, formed with letters from $A$, in which appear all the letters from $A$, each an even number of times. Let $b_{n}$ be the number of words of length $n$, formed with letters from $B$, in which appear all the letters from $B$, each an odd number of times. Compute $\frac{b_{n}}{a_{n}}$.

3 Let $n$ a positive integer and let $f:[0,1] \rightarrow \mathbb{R}$ an increasing function. Find the value of :

$$
\max _{0 \leq x_{1} \leq \cdots \leq x_{n} \leq 1} \sum_{k=1}^{n} f\left(\left|x_{k}-\frac{2 k-1}{2 n}\right|\right)
$$

