

AoPS Community

2014 Romania Team Selection Test

Romania Team Selection Test 2014

www.artofproblemsolving.com/community/c4469 by ComplexPhi, andreiromania, StanleyST

Day 1	
1	Let ABC be a triangle, let A' , B' , C' be the orthogonal projections of the vertices A , B , C on the lines BC , CA and AB , respectively, and let X be a point on the line AA' .Let γ_B be the circle through B and X , centred on the line BC , and let γ_C be the circle through C and X , centred on the line BC , and let γ_C be the circle through C and X , centred on the line BC . The circle γ_B meets the lines AB and BB' again at M and M' , respectively, and the circle γ_C meets the lines AC and CC' again at N and N' , respectively. Show that the points M , M' , N and N' are collinear.
2	Let $n \ge 2$ be an integer. Show that there exist $n + 1$ numbers $x_1, x_2, \ldots, x_{n+1} \in \mathbb{Q} \setminus \mathbb{Z}$, so that $\{x_1^3\} + \{x_2^3\} + \cdots + \{x_n^3\} = \{x_{n+1}^3\}$, where $\{x\}$ is the fractionary part of x .
3	Let $A_0A_1A_2$ be a scalene triangle. Find the locus of the centres of the equilateral triangles $X_0X_1X_2$, such that A_k lies on the line $X_{k+1}X_{k+2}$ for each $k = 0, 1, 2$ (with indices taken modulo 3).
4	Let k be a nonzero natural number and m an odd natural number . Prove that there exist a natural number n such that the number $m^n + n^m$ has at least k distinct prime factors.
5	 Let n be an integer greater than 1 and let S be a finite set containing more than n + 1 elements. Consider the collection of all sets A of subsets of S satisfying the following two conditions : (a) Each member of A contains at least n elements of S. (b) Each element of S is contained in at least n members of A. Determine max_A min_B B , as B runs through all subsets of A whose members cover S, and A runs through the above collection.
Day 2	

- 1 Let *ABC* be a triangle and let *X*,*Y*,*Z* be interior points on the sides *BC*, *CA*, *AB*, respectively. Show that the magnified image of the triangle *XYZ* under a homothety of factor 4 from its centroid covers at least one of the vertices *A*, *B*, *C*.
- **2** Let *a* be a real number in the open interval (0, 1). Let $n \ge 2$ be a positive integer and let $f_n \colon \mathbb{R} \to \mathbb{R}$

AoPS Community

2014 Romania Team Selection Test

 \mathbb{R} be defined by $f_n(x) = x + \frac{x^2}{n}$. Show that

$$\frac{a(1-a)n^2 + 2a^2n + a^3}{(1-a)^2n^2 + a(2-a)n + a^2} < (f_n \circ \cdots \circ f_n)(a) < \frac{an+a^2}{(1-a)n + a}$$

where there are n functions in the composition.

- **3** Determine all positive integers *n* such that all positive integers less than *n* and coprime to *n* are powers of primes.
- 4 Let f be the function of the set of positive integers into itself, defined by f(1) = 1, f(2n) = f(n)and f(2n+1) = f(n) + f(n+1). Show that, for any positive integer n, the number of positive odd integers m such that f(m) = n is equal to the number of positive integers **less or equal to** n and coprime to n.

[mod: the initial statement said less than n, which is wrong.]

Day 3

- 1 Let ABC be an isosceles triangle, AB = AC, and let M and N be points on the sides BC and CA, respectively, such that $\angle BAM = \angle CNM$. The lines AB and MN meet at P. Show that the internal angle bisectors of the angles BAM and BPM meet at a point on the line BC.
- **2** For every positive integer n, let $\sigma(n)$ denote the sum of all positive divisors of n (1 and n, inclusive). Show that a positive integer n, which has at most two distinct prime factors, satisfies the condition $\sigma(n) = 2n 2$ if and only if $n = 2^k(2^{k+1} + 1)$, where k is a non-negative integer and $2^{k+1} + 1$ is prime.
- **3** Determine the smallest real constant *c* such that

$$\sum_{k=1}^{n} \left(\frac{1}{k} \sum_{j=1}^{k} x_j \right)^2 \le c \sum_{k=1}^{n} x_k^2$$

for all positive integers n and all positive real numbers x_1, \dots, x_n .

4 Let *n* be a positive integer and let A_n respectively B_n be the set of nonnegative integers k < n such that the number of distinct prime factors of gcd(n,k) is even (respectively odd). Show that $|A_n| = |B_n|$ if *n* is even and $|A_n| > |B_n|$ if *n* is odd.

Example: $A_{10} = \{0, 1, 3, 7, 9\}$, $B_{10} = \{2, 4, 5, 6, 8\}$.

Day 4

AoPS Community

2014 Romania Team Selection Test

1 Let $\triangle ABC$ be an acute triangle of circumcentre O. Let the tangents to the circumcircle of $\triangle ABC$ in points B and C meet at point P. The circle of centre P and radius PB = PC meets the internal angle bisector of $\angle BAC$ inside $\triangle ABC$ at point S, and $OS \cap BC = D$. The projections of S on AC and AB respectively are E and F. Prove that AD, BE and CF are concurrent.

Author: Cosmin Pohoata

2 Let p be an odd prime number. Determine all pairs of polynomials f and g from $\mathbb{Z}[X]$ such that

$$f(g(X)) = \sum_{k=0}^{p-1} X^k = \Phi_p(X).$$

3 Let $n \in \mathbb{N}$ and S_n the set of all permutations of $\{1, 2, 3, ..., n\}$. For every permutation $\sigma \in S_n$ denote $I(\sigma) := \{i : \sigma(i) \le i\}$. Compute the sum $\sum_{\sigma \in S_n} \frac{1}{|I(\sigma)|} \sum_{i \in I(\sigma)} (i + \sigma(i))$.

- 1 Let *ABC* a triangle and *O* his circumcentre. The lines *OA* and *BC* intersect each other at *M*; the points *N* and *P* are defined in an analogous way. The tangent line in *A* at the circumcircle of triangle *ABC* intersect *NP* in the point *X*; the points *Y* and *Z* are defined in an analogous way. Prove that the points *X*, *Y* and *Z* are collinear.
- **2** Let *m* be a positive integer and let *A*, respectively *B*, be two alphabets with *m*, respectively 2m letters. Let also *n* be an even integer which is at least 2m. Let a_n be the number of words of length *n*, formed with letters from *A*, in which appear all the letters from *A*, each an even number of times. Let b_n be the number of words of length *n*, formed with letters from *B*, in which appear all the letters from *B*, in which appear all the letters from *B*, in which appear all the letters from *B*, each an odd number of times. Compute $\frac{b_n}{a_n}$.
- **3** Let *n* a positive integer and let $f: [0,1] \to \mathbb{R}$ an increasing function. Find the value of :

$$\max_{0 \le x_1 \le \dots \le x_n \le 1} \sum_{k=1}^n f\left(\left| x_k - \frac{2k-1}{2n} \right| \right)$$

Art of Problem Solving is an ACS WASC Accredited School.