Art of Problem Solving

AoPS Community

2017 Junior Balkan Team Selection Tests - Moldova

Junior Balkan Team Selection Tests - Moldova 2017

www.artofproblemsolving.com/community/c447273
by socrates

Problem 1 Find all natural numbers x, y such that

$$
x^{5}=y^{5}+10 y^{2}+20 y+1 .
$$

Problem 2 Let a, b, c be the sidelengths of a triangle. Prove that

$$
2<\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}<\sqrt{6} .
$$

Problem 3 Let $A B C$ be a triangle inscribed in a semicircle with center O and diameter $B C$.
Two tangent lines to the semicircle at A and B intersect at D. Prove that $D C$ goes through the midpoint of the altitude $A H$ of triangle $A B C$.

Problem 4 Find the maximum positive integer k such that there exist k positive integers which do not exceed 2017 and have the property that every number among them cannot be a power of any of the remaining $k-1$ numbers.

Problem 5 Consider the following increasing sequence $1,3,5,7,9$, of all positive integers consisting only of odd digits. Find the 2017 -th term of the above sequence.

Problem 6 Let a, b and c be real numbers such that $|a+b|+|b+c|+|c+a|=8$.
Find the maximum and minimum value of the expression $P=a^{2}+b^{2}+c^{2}$.
Problem 7 Given is an acute triangle $A B C$ and the median $A M$. Draw $B H \perp A C$. The line which goes through A and is perpendicular to $A M$ intersects $B H$ at E. On the opposite ray of the ray $A E$ choose F such that $A E=A F$. Prove that $C F \perp A B$.

Problem 8 The bottom line of a 2×13 rectangle is filled with 13 tokens marked with the numbers $1,2, \ldots, 13$ and located in that order. An operation is a move of a token from its cell into a free adjacent cell (two cells are called adjacent if they have a common side). What is the minimum number of operations needed to rearrange the chips in reverse order in the bottom line of the rectangle?

