AoPS Community

USAMO 1976

www.artofproblemsolving.com/community/c4474
by Brut3Forc3, rrusczyk

1 (a) Suppose that each square of a 4×7 chessboard is colored either black or white. Prove that with any such coloring, the board must contain a rectangle (formed by the horizontal and vertical lines of the board) whose four distinct unit corner squares are all of the same color.
(b) Exhibit a black-white coloring of a 4×6 board in which the four corner squares of every rectangle, as described above, are not all of the same color.

2 If A and B are fixed points on a given circle and $X Y$ is a variable diameter of the same circle, determine the locus of the point of intersection of lines $A X$ and $B Y$. You may assume that $A B$ is not a diameter.

3 Determine all integral solutions of

$$
a^{2}+b^{2}+c^{2}=a^{2} b^{2}
$$

4 If the sum of the lengths of the six edges of a trirectangular tetrahedron $P A B C$ (i.e., $\angle A P B=$ $\angle B P C=\angle C P A=90^{\circ}$) is S, determine its maximum volume.

5 If $P(x), Q(x), R(x)$, and $S(x)$ are all polynomials such that

$$
P\left(x^{5}\right)+x Q\left(x^{5}\right)+x^{2} R\left(x^{5}\right)=\left(x^{4}+x^{3}+x^{2}+x+1\right) S(x),
$$

prove that $x-1$ is a factor of $P(x)$.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

