AoPS Community

USAMO 1978

www.artofproblemsolving.com/community/c4476
by Mrdavid445, rrusczyk

1 Given that a, b, c, d, e are real numbers such that
$a+b+c+d+e=8, a^{2}+b^{2}+c^{2}+d^{2}+e^{2}=16$.
Determine the maximum value of e.
$2 \quad A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are square maps of the same region, drawn to different scales and superimposed as shown in the figure. Prove that there is only one point O on the small map that lies directly over point O^{\prime} of the large map such that O and O^{\prime} each represent the same place of the country. Also, give a Euclidean construction (straight edge and compass) for O.

3 An integer n will be called good if we can write

$$
n=a_{1}+a_{2}+\cdots+a_{k},
$$

where $a_{1}, a_{2}, \ldots, a_{k}$ are positive integers (not necessarily distinct) satisfying

$$
\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}=1
$$

Given the information that the integers 33 through 73 are good, prove that every integer ≥ 33 is good.

4 (a) Prove that if the six dihedral (i.e. angles between pairs of faces) of a given tetrahedron are congruent, then the tetrahedron is regular.
(b) Is a tetrahedron necessarily regular if five dihedral angles are congruent?

5 Nine mathematicians meet at an international conference and discover that among any three of them, at least two speak a common language. If each of the mathematicians speak at most three languages, prove that there are at least three of the mathematicians who can speak the same language.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

