AoPS Community

USAMO 1980

www.artofproblemsolving.com/community/c4478
by Mrdavid445, rrusczyk

1 A two-pan balance is innacurate since its balance arms are of different lengths and its pans are of different weights. Three objects of different weights A, B, and C are each weighed separately. When placed on the left-hand pan, they are balanced by weights A_{1}, B_{1}, and C_{1}, respectively. When A and B are placed on the right-hand pan, they are balanced by A_{2} and B_{2}, respectively. Determine the true weight of C in terms of $A_{1}, B_{1}, C_{1}, A_{2}$, and B_{2}.

2 Determine the maximum number of three-term arithmetic progressions which can be chosen from a sequence of n real numbers

$$
a_{1}<a_{2}<\cdots<a_{n} .
$$

3 Let $F_{r}=x^{r} \sin r A+y^{r} \sin r B+z^{r} \sin r C$, where x, y, z, A, B, C are real and $A+B+C$ is an integral multiple of π. Prove that if $F_{1}=F_{2}=0$, then $F_{r}=0$ for all positive integral r.

4 The inscribed sphere of a given tetrahedron touches all four faces of the tetrahedron at their respective centroids. Prove that the tetrahedron is regular.

5 Prove that for numbers a, b, c in the interval $[0,1]$,

$$
\frac{a}{b+c+1}+\frac{b}{c+a+1}+\frac{c}{a+b+1}+(1-a)(1-b)(1-c) \leq 1 .
$$

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

