AoPS Community

USAMO 1983

www.artofproblemsolving.com/community/c4481
by Binomial-theorem, rrusczyk

1 On a given circle, six points A, B, C, D, E, and F are chosen at random, independently and uniformly with respect to arc length. Determine the probability that the two triangles $A B C$ and $D E F$ are disjoint, i.e., have no common points.

2 Prove that the roots of

$$
x^{5}+a x^{4}+b x^{3}+c x^{2}+d x+e=0
$$

cannot all be real if $2 a^{2}<5 b$.
3 Each set of a finite family of subsets of a line is a union of two closed intervals. Moreover, any three of the sets of the family have a point in common. Prove that there is a point which is common to at least half the sets of the family.

4 Six segments $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$, and S_{6} are given in a plane. These are congruent to the edges $A B, A C, A D, B C, B D$, and $C D$, respectively, of a tetrahedron $A B C D$. Show how to construct a segment congruent to the altitude of the tetrahedron from vertex A with straight-edge and compasses.

5 Consider an open interval of length $1 / n$ on the real number line, where n is a positive integer. Prove that the number of irreducible fractions p / q, with $1 \leq q \leq n$, contained in the given interval is at most $(n+1) / 2$.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa. org).

