AoPS Community

USAMO 1984

www.artofproblemsolving.com/community/c4482
by gauss1181, Binomial-theorem, rrusczyk

1 The product of two of the four roots of the quartic equation $x^{4}-18 x^{3}+k x^{2}+200 x-1984=0$ is -32 . Determine the value of k.

2 The geometric mean of any set of m non-negative numbers is the m-th root of their product.
(i) For which positive integers n is there a finite set S_{n} of n distinct positive integers such that the geometric mean of any subset of S_{n} is an integer? (ii) Is there an infinite set S of distinct positive integers such that the geometric mean of any finite subset of S is an integer?
$3 P, A, B, C$, and D are five distinct points in space such that $\angle A P B=\angle B P C=\angle C P D=$ $\angle D P A=\theta$, where θ is a given acute angle. Determine the greatest and least values of $\angle A P C+$ $\angle B P D$.

4 A difficult mathematical competition consisted of a Part I and a Part II with a combined total of 28 problems. Each contestant solved 7 problems altogether. For each pair of problems, there were exactly two contestants who solved both of them. Prove that there was a contestant who, in Part l, solved either no problems or at least four problems.
$5 \quad P(x)$ is a polynomial of degree $3 n$ such that

$$
\begin{aligned}
P(0)=P(3)=\cdots= & P(3 n)=2, \\
P(1)=P(4)=\cdots= & P(3 n-2)=1, \\
P(2)=P(5)=\cdots= & P(3 n-1)=0, \quad \text { and } \\
& P(3 n+1)=730 .
\end{aligned}
$$

Determine n.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

