AoPS Community

USAMO 1985

www.artofproblemsolving.com/community/c4483
by Mrdavid445, Binomial-theorem, rrusczyk

1 Determine whether or not there are any positive integral solutions of the simultaneous equations

$$
\begin{aligned}
& x_{1}^{2}+x_{2}^{2}+\cdots+x_{1985}^{2}=y^{3}, \\
& x_{1}^{3}+x_{2}^{3}+\cdots+x_{1985}^{3}=z^{2}
\end{aligned}
$$

with distinct integers $x_{1}, x_{2}, \ldots, x_{1985}$.
2 Determine each real root of

$$
x^{4}-\left(2 \cdot 10^{10}+1\right) x^{2}-x+10^{20}+10^{10}-1=0
$$

correct to four decimal places.
3 Let A, B, C, D denote four points in space such that at most one of the distances $A B, A C, A D, B C, B D, C D$ is greater than 1 . Determine the maximum value of the sum of the six distances.

4 There are n people at a party. Prove that there are two people such that, of the remaining $n-2$ people, there are at least $\left\lfloor\frac{n}{2}\right\rfloor-1$ of them, each of whom either knows both or else knows neither of the two. Assume that knowing is a symmetric relation, and that $\lfloor x\rfloor$ denotes the greatest integer less than or equal to x.

5 Let $a_{1}, a_{2}, a_{3}, \cdots$ be a non-decreasing sequence of positive integers. For $m \geq 1$, define $b_{m}=$ $\min \left\{n: a_{n} \geq m\right\}$, that is, b_{m} is the minimum value of n such that $a_{n} \geq m$. If $a_{19}=85$, determine the maximum value of

$$
a_{1}+a_{2}+\cdots+a_{19}+b_{1}+b_{2}+\cdots+b_{85} .
$$

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

