AoPS Community

Italy TST 1997

www.artofproblemsolving.com/community/c448311
by Medjl

1 Let x, y, z, t be real numbers with x, y, z not all equal such that

$$
x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}=t .
$$

Find all possible values of t such that $x y z+t=0$.
2 Let $A B C$ be a triangle with $A B=A C$. Suppose that the bisector of $\angle A B C$ meets the side $A C$ at point D such that $B C=B D+A D$. Find the measure of $\angle B A C$.

3 Determine all triples (x, y, p) with x, y positive integers and p a prime number verifying the equation $p^{x}-y^{p}=1$.

4 There are n pawns on n distinct squares of a 19×19 chessboard. In each move, all the pawns are simultaneously moved to a neighboring square (horizontally or vertically) so that no two are moved onto the same square. No pawn can be moved along the same line in two successive moves. What is largest number of pawns can a player place on the board (being able to arrange them freely) so as to be able to continue the game indefinitely?

