Art of Problem Solving

AoPS Community

Benelux 2017

www.artofproblemsolving.com/community/c448392
by socrates

1 Find all functions $f: \mathbb{Q}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that

$$
f(x y) \cdot \operatorname{gcd}\left(f(x) f(y), f\left(\frac{1}{x}\right) f\left(\frac{1}{y}\right)\right)=x y f\left(\frac{1}{x}\right) f\left(\frac{1}{y}\right),
$$

for all $x, y \in \mathbb{Q}_{>0}$, where $\operatorname{gcd}(a, b)$ denotes the greatest common divisor of a and b.
2 Let $n \geq 2$ be an integer. Alice and Bob play a game concerning a country made of n islands. Exactly two of those n islands have a factory. Initially there is no bridge in the country. Alice and Bob take turns in the following way. In each turn, the player must build a bridge between two different islands I_{1} and I_{2} such that: $\bullet I_{1}$ and I_{2} are not already connected by a bridge. \bullet at least one of the two islands I_{1} and I_{2} is connected by a series of bridges to an island with a factory (or has a factory itself). (Indeed, access to a factory is needed for the construction.) As soon as a player builds a bridge that makes it possible to go from one factory to the other, this player loses the game. (Indeed, it triggers an industrial battle between both factories.) If Alice starts, then determine (for each $n \geq 2$) who has a winning strategy.
(Note: It is allowed to construct a bridge passing above another bridge.)
3 In the convex quadrilateral $A B C D$ we have $\angle B=\angle C$ and $\angle D=90^{\circ}$. Suppose that $|A B|=$ $2|C D|$. Prove that the angle bisector of $\angle A C B$ is perpendicular to $C D$.

4 A Benelux n-square (with $n \geq 2$) is an $n \times n$ grid consisting of n^{2} cells, each of them containing a positive integer, satisfying the following conditions: \bullet the n^{2} positive integers are pairwise distinct. \bullet if for each row and each column we compute the greatest common divisor of the n numbers in that row/column, then we obtain $2 n$ different outcomes.
(a) Prove that, in each Benelux n-square (with $n \geq 2$), there exists a cell containing a number which is at least $2 n^{2}$.
(b) Call a Benelux n-square minimal if all n^{2} numbers in the cells are at most $2 n^{2}$. Determine all $n \geq 2$ for which there exists a minimal Benelux n-square.

