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1 Determine all solutions in non-zero integers a and b of the equation

(a® +b)(a + b*) = (a — b)3.

2 AD, BE, and CF are the bisectors of the interior angles of triangle ABC, with D, E, and F lying
on the perimeter. If angle EDF is 90 degrees, determine all possible values of angle BAC.

3 Construct a set S of polynomials inductively by the rules:
)z e s,
(i) if f(z) € S, thenzf(z) € Sandz + (1 —z)f(x) € S.
Prove that there are no two distinct polynomials in S whose graphs intersect within the region
{0 <z <1}

4 Three circles C; are given in the plane: C; has diameter AB of length 1; Cs is concentric and has
diameter & (1 < k < 3); C5 has center A and diameter 2k. We regard & as fixed. Now consider
all straight line segments XY which have one endpoint X on C5, one endpoint Y on (s, and
contain the point B. For what ratio X B/BY will the segment XY have minimal length?

5 Given a sequence (z1,zs,...,xy,) of 0's and 1's, let A be the number of triples (z;, z;, x) with
i < j < ksuchthat (z;,z;,z;) equals (0,1,0) or (1,0,1). For 1 < < n, let d; denote the number
of j for which either j < iand z; = x; orelse j > i and z; # w;.

(a) Prove that .
=) -2 )

(b) Given an odd number n, what is the maximum possible value of A? [15 points]

(Of course, (3) = b,(a - ) [5 points]
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