AoPS Community

USAMO 1987

www.artofproblemsolving.com/community/c4485
by Binomial-theorem, rrusczyk

1 Determine all solutions in non-zero integers a and b of the equation

$$
\left(a^{2}+b\right)\left(a+b^{2}\right)=(a-b)^{3} .
$$

$2 A D, B E$, and $C F$ are the bisectors of the interior angles of triangle $A B C$, with D, E, and F lying on the perimeter. If angle $E D F$ is 90 degrees, determine all possible values of angle $B A C$.

3 Construct a set S of polynomials inductively by the rules:
(i) $x \in S$;
(ii) if $f(x) \in S$, then $x f(x) \in S$ and $x+(1-x) f(x) \in S$.

Prove that there are no two distinct polynomials in S whose graphs intersect within the region $\{0<x<1\}$.

4 Three circles C_{i} are given in the plane: C_{1} has diameter $A B$ of length $1 ; C_{2}$ is concentric and has diameter $k(1<k<3)$; C_{3} has center A and diameter $2 k$. We regard k as fixed. Now consider all straight line segments $X Y$ which have one endpoint X on C_{2}, one endpoint Y on C_{3}, and contain the point B. For what ratio $X B / B Y$ will the segment $X Y$ have minimal length?

5 Given a sequence $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of 0 's and 1 's, let A be the number of triples $\left(x_{i}, x_{j}, x_{k}\right)$ with $i<j<k$ such that $\left(x_{i}, x_{j}, x_{k}\right)$ equals $(0,1,0)$ or $(1,0,1)$. For $1 \leq i \leq n$, let d_{i} denote the number of j for which either $j<i$ and $x_{j}=x_{i}$ or else $j>i$ and $x_{j} \neq x_{i}$.
(a) Prove that

$$
A=\binom{n}{3}-\sum_{i=1}^{n}\binom{d_{i}}{2} .
$$

(Of course, $\binom{a}{b}=\frac{a!}{b!(a-b)!}$. [5 points]
(b) Given an odd number n, what is the maximum possible value of A ? [15 points]

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

