

## **AoPS Community**

## **Olympic Revenge 2017**

www.artofproblemsolving.com/community/c448584 by LittleGlequius

- **1** Prove that does not exist positive integers a, b and k such that 4abk a b is a perfect square.
- **2** Let  $\triangle ABC$  a triangle with circumcircle  $\Gamma$ . Suppose there exist points R and S on sides AB and AC, respectively, such that BR = RS = SC. A tangent line through A to  $\Gamma$  meet the line RS at P. Let I the incenter of triangle  $\triangle ARS$ . Prove that PA = PI
- **3** Let *n* a positive integer. We call a pair  $(\pi, C)$  composed by a permutation  $\pi: 1, 2, ..., n \rightarrow 1, 2, ..., n$ and a binary function  $C: 1, 2, ..., n \rightarrow 0, 1$  "revengeful" if it satisfies the two following conditions:

1)For every  $i \in 1, 2, ..., n$ , there exist  $j \in S_i = i, \pi(i), \pi(\pi(i)), ...$  such that C(j) = 1.

2) If C(k) = 1, then k is one of the  $v_2(|S_k|) + 1$  highest elements of  $S_k$ , where  $v_2(t)$  is the highest nonnegative integer such that  $2^{v_2(t)}$  divides t, for every positive integer t.

Let V the number of revengeful pairs and P the number of partitions of n with all parts powers of 2. Determine  $\frac{V}{R}$ .

4 Let  $f : \mathbb{R}^*_+ \to \mathbb{R}^*_+$  such that f'''(x) > 0 for all  $x \in \mathbb{R}^*_+$ . Prove that:  $f(a^2 + b^2 + c^2) + 2f(ab + bc + ac) \ge f(a^2 + 2bc) + f(b^2 + 2ca) + f(c^2 + 2ab)$ , for all  $a, b, c \in \mathbb{R}^*_+$ .

Act of Problem Solving is an ACS WASC Accredited School.