AoPS Community

Olympic Revenge 2017

www.artofproblemsolving.com/community/c448584
by LittleGlequius

1 Prove that does not exist positive integers a, b and k such that $4 a b k-a-b$ is a perfect square.

2 Let $\triangle A B C$ a triangle with circumcircle Γ. Suppose there exist points R and S on sides $A B$ and $A C$, respectively, such that $B R=R S=S C$. A tangent line through A to Γ meet the line $R S$ at P. Let I the incenter of triangle $\triangle A R S$. Prove that $P A=P I$

3 Let n a positive integer. We call a pair (π, C) composed by a permutation $\pi: 1,2, \ldots n \rightarrow 1,2, \ldots, n$ and a binary function $C: 1,2, \ldots, n \rightarrow 0,1$ "revengeful" if it satisfies the two following conditions:
1)For every $i \in 1,2, \ldots, n$, there exist $j \in S_{i}=i, \pi(i), \pi(\pi(i)), \ldots$ such that $C(j)=1$.
2) If $C(k)=1$, then k is one of the $v_{2}\left(\left|S_{k}\right|\right)+1$ highest elements of S_{k}, where $v_{2}(t)$ is the highest nonnegative integer such that $2^{v_{2}(t)}$ divides t, for every positive integer t.

Let V the number of revengeful pairs and P the number of partitions of n with all parts powers of 2 .
Determine $\frac{V}{P}$.
$4 \quad$ Let $f: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}_{+}^{*}$ such that $f^{\prime \prime \prime}(x)>0$ for all $x \in \mathbb{R}_{+}^{*}$. Prove that:
$f\left(a^{2}+b^{2}+c^{2}\right)+2 f(a b+b c+a c) \geq f\left(a^{2}+2 b c\right)+f\left(b^{2}+2 c a\right)+f\left(c^{2}+2 a b\right)$, for all $a, b, c \in \mathbb{R}_{+}^{*}$.

