AoPS Community

USAMO 1988

www.artofproblemsolving.com/community/c4486
by ahaanomegas, rrusczyk

1 By a pure repeating decimal (in base 10), we mean a decimal $0 . \overline{a_{1} \cdots a_{k}}$ which repeats in blocks of k digits beginning at the decimal point. An example is $.243243243 \cdots=\frac{9}{37}$. By a mixed repeating decimal we mean a decimal $0 . b_{1} \cdots b_{m} \overline{a_{1} \cdots a_{k}}$ which eventually repeats, but which cannot be reduced to a pure repeating decimal. An example is $.011363636 \cdots=\frac{1}{88}$.
Prove that if a mixed repeating decimal is written as a fraction $\frac{p}{q}$ in lowest terms, then the denominator q is divisible by 2 or 5 or both.

2 The cubic equation $x^{3}+a x^{2}+b x+c=0$ has three real roots. Show that $a^{2}-3 b \geq 0$, and that $\sqrt{a^{2}-3 b}$ is less than or equal to the difference between the largest and smallest roots.

3 A function $f(S)$ assigns to each nine-element subset of S of the set $\{1,2, \ldots, 20\}$ a whole number from 1 to 20. Prove that regardless of how the function f is chosen, there will be a tenelement subset $T \subset\{1,2, \ldots, 20\}$ such that $f(T-\{k\}) \neq k$ for all $k \in T$.

4 Let I be the incenter of triangle $A B C$, and let A^{\prime}, B^{\prime}, and C^{\prime} be the circumcenters of triangles $I B C, I C A$, and $I A B$, respectively. Prove that the circumcircles of triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are concentric.

5 A polynomial product of the form

$$
(1-z)^{b_{1}}\left(1-z^{2}\right)^{b_{2}}\left(1-z^{3}\right)^{b_{3}}\left(1-z^{4}\right)^{b_{4}}\left(1-z^{5}\right)^{b_{5}} \cdots\left(1-z^{32}\right)^{b_{32}}
$$

where the b_{k} are positive integers, has the surprising property that if we multiply it out and discard all terms involving z to a power larger than 32 , what is left is just $1-2 z$. Determine, with proof, b_{32}.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

